TWAIN Specification

Version 1.9

This document has been
ratified by the TWAIN Working
Group Committee as of January 20, 2000

TWAIN

Liwdring doppes Wi A

Acknowledgments

The TWAIN Working Group acknowledges the following individuals and their respective
companies for their contributions to this document. Their hard work in defining, designing,
editing, proofreading, and discussing the evolution of the document have been invaluable.

Eastman Kodak

Mark McLaughlin

Senior Software Engineer

Hewlett-Packard
Chuck Mayne
Software Development Engineer

JFL Peripheral Solutions Inc.
Jon Harju
Director of Engineering

Critical Path Software
Dave Camp
Software Engineer

Xerox Corporation
Dan Young
Technical Specialist, Program Manager

Adobe Systems

Michael O'Rourke

Senior Computer Scientist
Digimarc

Burt Perry

Vice President of Engineering

We would also like to thank the TWAIN Working Group Technical Committee for their
opinions and contributions

TWAIN

s Wik pbiem MLM\KB\100197 - 2000 - 0120

Introduction

Chapter Contents

The Need for Consistency
The Elements of TWAIN

The Benefits of Using TWAIN
The Creation of TWAIN

A W N -

The Need for Consistency

With the introduction of scanners, digital cameras, and other image acquisition devices, users
eagerly discovered the value of incorporating images into their documents and other work.
However, supporting the display and manipulation of this raster data placed a high cost on
application developers. They needed to create user interfaces and build in device control for
the wide assortment of available image devices. Once their application was prepared to
support a given device, they faced the discouraging reality that devices continue to be
upgraded with new capabilities and features. Application developers found themselves
continually revising their product to stay current.

Developers of both the image acquisition devices and the software applications recognized the
need for a standard communication between the image devices and the applications. A
standard would benefit both groups as well as the users of their products. It would allow the
device vendors’ products to be accessed by more applications and application vendors could
access data from those devices without concern for which type of device, or particular device,
provided it. TWAIN was developed because of this need for consistency and simplification.

TWAIN 1.9 Specification 1-1

Chapter 1

The Elements of TWAIN

TWAIN defines a standard software protocol and API (application programming interface) for

communication between software applications and image acquisition devices (the source of the
data).

The three key elements in TWAIN are:
» The application software - An application must be modified to use TWAIN.

» The Source Manager software - This software manages the interactions between the
application and the Source. This code is provided in the TWAIN Developer’s Toolkit
and should be shipped for free with each TWAIN application and Source.

» The Source software - This software controls the image acquisition device and is written
by the device developer to comply with TWAIN specifications. Traditional device
drivers are now included with the Source software and do not need to be shipped by

applications.
HW Dependant I/O Layer
(SCsSI, Parallel, Serial, etc.)
Application Source Manager Data Source
Software Software Software
/M
Image Digital Camera
Application "| Data Source
Fax Data Source R Scanner
Application Manager ~| Data Source
Word Processor Image Database
Application TWAIN Data Source
Interfaces

Consumers of
Image Data

Producers of
Image Data

Figure 1-1. TWAIN Elements

1-2 TWAIN 1.9 Specification

Introduction

The Benefits of Using TWAIN

For the Application Developer

» Allows you to offer users of your application a simple way to incorporate images from
any compatible raster device without leaving your application.

» Saves time and dollars. If you currently provide low-level device drivers for scanners,
etc., you no longer need to write, support, or ship these drivers. The TWAIN-compliant
image acquisition devices will provide Source software modules that eliminate the need
for you to create and ship device drivers.

» Permits your application to access data from any TWAIN-compliant image peripheral
simply by modifying your application code once using the high-level TWAIN
application programming interface. No customization by product is necessary. TWAIN
image peripherals can include desktop scanners, hand scanners, digital cameras, frame
grabbers, image databases, or any other raster image source that complies to the TWAIN
protocol and API .

» Allows you to determine the features and capabilities that an image acquisition device
can provide. Your application can then restrict the Source to offer only those capabilities
that are compatible with your application’s needs and abilities.

» Eliminates the need for your application to provide a user interface to control the image
acquisition process. There is a software user interface module shipped with every
TWAIN-compliant Source device to handle that process. Of course, you may provide
your own user interface for acquisition, if desired.

For the Source Developer

 Increases the use and support of your product. More applications will become image
consumers as a result of the ease of implementation and breadth of device integration
that TWAIN provides.

« Allows you to provide a proprietary user interface for your device. This lets you present
the newest features to the user without waiting for the applications to incorporate them
into their interfaces.

» Saves money by reducing your implementation costs. Rather than create and support
various versions of your device control software to integrate with various applications,
you create just a single TWAIN-compliant Source.

For the End User

» Gives users a simple way to incorporate images into their documents. They can access
the image in fewer steps because they never need to leave your application.

Note: As of this writing TWAIN is supported on the following operating systems: all versions of
Apple Macintosh, Microsoft Windows 3.x / 9x / NT and Windows 2000. TWAIN is not
available on Windows CE. TWAIN is available on IBM OS/2, but the binaries for the Source
Manager were not built or distributed by the TWAIN Working Group.

TWAIN 1.9 Specification 1-3

Chapter 1

The Creation of TWAIN

1-4

TWAIN was created by a small group of software and hardware companies in response to the
need for a proposed specification for the imaging industry. The Working Group’s goal was to
provide an open, multi-platform solution to interconnect the needs of raster input devices with
application software. The original Working Group was comprised of representatives from five
companies: Aldus, Caere, Eastman Kodak, Hewlett-Packard, and Logitech. Three other
companies, Adobe, Howtek, and Software Architects also contributed significantly.

The design of TWAIN began in January, 1991. Review of the original TWAIN Developer’s
Toolkit occurred from April, 1991 through January, 1992. The original Toolkit was reviewed by
the TWAIN Coalition. The Coalition includes approximately 300 individuals representing 200
companies who continue to influence and guide the future direction of TWAIN.

The current version of TWAIN was written by the current 11 members of the TWAIN Working
Group. The members include: Adobe, Canon, Eastman Kodak Company, Fujitsu Computer
Products of America, Genoa Technology, Inc., Hewlett-Packard Company, Intel Corporation,
J.F.L. Peripherals, Kofax Image Products, Ricoh Corporation, and Xerox.

In May, 1998, an agreement was announced between Microsoft and the TWAIN Working
Group which provided for the inclusion of the TWAIN Data Source Manager in Microsoft
Windows 98 and Microsoft Windows NT 5.0.

During the creation of TWAIN, the following architecture objectives were adhered to:

» Ease of Adoption - Allow an application vendor to make their application TWAIN-
compliant with a reasonable amount of development and testing effort. The basic
features of TWAIN should be implemented just by making modest changes to the
application. To take advantage of a more complete set of functionality and control
capabilities, more development effort should be anticipated.

» Extensibility - The architecture must include the flexibility to embrace multiple
windowing environments spanning various host platforms (Macintosh, Microsoft
Windows, Motif, etc.) and facilitate the exchange of various data types between Source
devices and destination applications. Currently, only the raster image data type is
supported but suggestions for future extensions include text, facsimile, vector graphics,
and others.

» Integration - Key elements of the TWAIN implementation “belong” in the operating
system. The agreement between Microsoft and the TWAIN Working Group indicates
that this integration into the operating system is beginning. TWAIN must be
implemented to encourage backward compatibility (extensibility) and smooth migration
into the operating system. An implementation that minimizes the use of platform-
specific mechanisms will have enhanced longevity and adoptability.

» Easy Application <-> Source Interconnect - A straight-forward Source identification
and selection mechanism will be supplied. The application will drive this mechanism
through a simple API. This mechanism will also establish the data and control links
between the application and Source. It will support capability and configuration
communication and negotiation between the application and Source.

* Encapsulated Human Interface - A device-native user interface will be required in each
Source. The application can optionally override this native user interface while still
using the Source to control the physical device.

TWAIN 1.9 Specification

Technical Overview

The TWAIN protocol and API are easiest to understand when you see the overall picture. This
chapter describes:

Chapter Contents

The TWAIN Architecture 5
The User Interface to TWAIN 8
Communication Between

the Elements of TWAIN 9
The Use of Operation Triplets 13
The State-Based Protocol 14
Capabilities 17
Modes Available for Data Transfer 22

The TWAIN Architecture

The transfer of data is made possible by three software elements that work together in TWAIN:
the application, the Source Manager, and the Source.

These elements use the architecture of TWAIN to communicate. The TWAIN architecture
consists of four layers:

» Application

 Protocol

» Acquisition

» Device

TWAIN 1.9 Specification 2-5

Chapter 2

The TWAIN software elements occupy the layers as illustrated below. Each layer is described
in the sections that follow.

Application Layer User's
Application

" TWAIN Code

Protocol Layer Ve \
\Source Managerj

TWAIN Code

. v

Acquisition Layer Source

Device Interfacing

Device Layer v

Local Device

Figure 2-1. TWAIN Software Elements

Application
The user’s software application executes in this layer.

TWAIN describes user interface guidelines for the application developer regarding how users
access TWAIN functionality and how a particular Source is selected.

TWAIN is not concerned with how the application is implemented. TWAIN has no effect on
any inter-application communication scheme that the application may use.

Protocol
The protocol is the “language” spoken and syntax used by TWAIN. It implements precise
instructions and communications required for the transfer of data.
The protocol layer includes:

» The portion of application software that provides the interface between the application
and TWAIN

» The TWAIN Source Manager provided by TWAIN

* The software included with the Source device to receive instructions from the Source
Manager and transfer back data and Return Codes

The contents of the protocol layer are discussed in more detail in a following section called
“Communication between the Elements of TWAIN.”

2-6 TWAIN 1.9 Specification

Technical Overview

Acquisition

Acquisition devices may be physical (like a scanner or digital camera) or logical (like an image
database). The software elements written to control acquisitions are called Sources and reside
primarily in this layer.

The Source transfers data for the application. It uses the format and transfer mechanism agreed
upon by the Source and application.

The Source always provides a built-in user interface that controls the device(s) the Source was
written to drive. An application can override this and present its own user interface for
acquisition, if desired.

Device

This is the location of traditional low-level device drivers. They convert device-specific
commands into hardware commands and actions specific to the particular device the driver
was written to accompany. Applications that use TWAIN no longer need to ship device drivers
because they are part of the Source.

TWAIN is not concerned with the device layer at all. The Source hides the device layer from
the application. The Source provides the translation from TWAIN operations and interactions
with the Source’s user interface into the equivalent commands for the device driver that cause
the device to behave as desired.

Note: The Protocol layer is the most thoroughly and rigidly defined to allow precise
communications between applications and Sources. The information in this document
concentrates on the Protocol and Acquisition layers.

TWAIN 1.9 Specification 2-7

Chapter 2

The User Interface to TWAIN

When an application uses TWAIN to acquire data, the acquisition process may be visible to the

2-8

application’s users in the following three areas:

Application

Source Manager

Source

New

Open...

Save

Acquire...
Select Source...
Print

Print Setup...
Exit

| Select Source

Sources:

Source Number 1

Source Number 2

Source Number 3
| Cancel |

- | Source Number 1

Source’s
User Interface

Figure 2-2. Data Acquisition Process

The Application

The user needs to select the device from which they intend to acquire the data. They also need
to signal when they are ready to have the data transferred. To allow this, TWAIN strongly
recommends the application developer add two options to their File menu:

+ Select Source - to select the device
» Acquire - to begin the transfer process

The Source Manager

When the user chooses the Select Source option, the application requests that the Source
Manager display its Select Source dialog box. This lists all available devices and allows the
user to highlight and select one device. If desired, the application can write its own version of

this user interface.

The Source

Every TWAIN-compliant Source provides a user interface specific to its particular device.
When the application user selects the Acquire option, the Source’s User Interface may be
displayed. If desired, the application can write its own version of this interface, too.

TWAIN 1.9 Specification

Technical Overview

Communication Between the Elements of TWAIN

Communication between elements of TWAIN is possible through two entry points. They are
called DSM_Entry() and DS_Entry(). DSM means Data Source Manager and DS means Data
Source.

Application

DSM_Entry()

Source Manager

/

DS_Entry()

Source

Figure 2-3. Entry Points for Communicating Between Elements

The Application

The goal of the application is to acquire data from a Source. However, applications cannot
contact the Source directly. All requests for data, capability information, error information, etc.
must be handled through the Source Manager.

Approximately 140 operations are defined by TWAIN. The application sends them to the
Source Manager for transmission. The application specifies which element, Source Manager or
Source, is the final destination for each requested operation.

The application communicates to the Source Manager through the Source Manager’s only entry
point, the DSM_Entry() function.

TWAIN 1.9 Specification 2-9

Chapter 2

The parameter list of the DSM_Entry function contains:

« An identifier structure providing information about the application that originated the
function call

e The destination of this request (Source Manager or Source)
» Atriplet that describes the requested operation. The triplet specifies:
v" Data Group for the Operation (DG_)

v" Data Argument Type for the Operation (DAT_)

v" Message for the Operation (MSG_)

(These are described more in the section called “The Use of Operation Triplets” located
later in this chapter.)

» A pointer field to allow the transfer of data

The function call returns a value (the Return Code) indicating the success or failure of the
operation.

Written in C code form, the function call looks like this:

On Windows
TW Ul NT16 FAR PASCAL DSM Entry

(pTWIDENTITY pOigin, /1 source of message
PTW.I DENTITY pDest, /1 destination of nessage
TW_UI NT32 DG, /1 data group ID DG xxxx
TW_UI NT16 DAT, /1 data argunment type: DAT_XXxXX
TW_ Ul NT16 MBG /1 message | D: MBG_XxxX
TW MVEMREF pDat a /1 pointer to data

)

On Macintosh
FAR PASCAL TW U NT16 DSM Entry

(pTWIDENTITY pOigin, /1 source of nessage
pTW.I DENTITY pDest, /1 destination of nessage
TW_UI NT32 DG, /1 data group ID DG xXxxx
TW_ Ul NT16 DAT, /1 data argument type: DAT_XXXX
TW_ Ul NT16 MSG /1l nmessage I D: MBG_XXXxX
TW MEMREF pDat a /! pointer to data
)

Note: Data type definitions are covered in Chapter 8 of this document and in the file called
TWAIN.H which is shipped on the developer’s disk. (It can also be downloaded from
the TWAIN Working Group Web site.)

2-10 TWAIN 1.9 Specification

Technical Overview

The Source Manager

The Source Manager provides the communication path between the application and the Source,
supports the user’s selection of a Source, and loads the Source for access by the application.
Communications from application to Source Manager arrive in the DSM_Entry() entry point.

 If the destination in the DSM_Entry call is the Source Manager - The Source Manager
processes the operation itself.

 If the destination in the DSM_Entry call is the Source - The Source Manager translates
the parameter list of information, removes the destination parameter and calls the
appropriate Source. To reach the Source, the Source Manager calls the Source’s
DS_Entry() function. TWAIN requires each Source to have this entry point.

Written in C code form, the DS_Entry function call looks like this:

On Windows
TW Ul NT16 FAR PASCAL DS Entry
(pTWIDENTITY pOigin, /1 source of nessage
TW_UI NT32 DG /1 data group ID DG xxxx
TW_UI NT16 DAT, /1 data argunment type: DAT_XXxXX
TW_ Ul NT16 MSG /1 message | D: MBG_XxxX
TW MVEMREF pDat a /1 pointer to data

)
On Macintosh
FAR PASCAL TWUI NT16 DS Entry

(pTWIDENTITY pOigin, /1 source of nessage

TW_UI NT32 DG /1 data group ID DG xxxx

TW_UI NT16 DAT, /1 data argunment type: DAT_XXXX
TW_ Ul NT16 MSG /1 message | D: MBG_XxxX

TW MVEMREF pDat a /1 pointer to data
)

In addition, the Source Manager can initiate three operations that were not originated by the
application. These operation triplets exist just for Source Manager to Source communications
and are executed by the Source Manager while it is displaying its Select Source dialog box. The
operations are used to identify the available Sources and to open or close Sources.

The implementation of the Source Manager differs between the supported systems:

On Windows
The Source Manager for Windows is a Dynamic Link Library (DLL).

The Source Manager can manage simultaneous sessions between many applications with
many Sources. That is, the same instance of the Source Manager is shared by multiple
applications.

On Macintosh
The Source Manager for Macintosh is a PowerPC Shared Library.

TWAIN 1.9 Specification 2-11

Chapter 2

The Source

The Source receives operations either from the application, via the Source Manager, or directly
from the Source Manager. It processes the request and returns the appropriate Return Code
(the codes are prefixed with TWRC) indicating the results of the operation to the Source
Manager. If the originator of the operation was the application, then the Return Code is passed
back to the application as the return value of its DSM_Entry() function call. If the operation
was unsuccessful, a Condition Code (the codes are prefixed with TWCC) containing more
specific information is set by the Source. Although the Condition Code is set, it is not
automatically passed back. The application must invoke an operation to inquire about the
contents of the Condition Code.

The implementation of the Source is the same as the implementation of the Source Manager:

On Windows

The Source is a Dynamic Link Library (DLL) so applications share the same copy of each
element.

On Macintosh
The Source is implemented as a PowerPC Shared Library.

Communication Flowing from Source to Application

2-12

The majority of operation requests are initiated by the application and flow to the Source
Manager and Source. The Source, via the Source Manager, is able to pass back data and Return
Codes.

However, there are four times when the Source needs to interrupt the application and request
that an action occur. These situations are:

* Notify the application that a data transfer is ready to occur. The time required for a
Source to prepare data for a transfer will vary. Rather than have the application wait for
the preparation to be complete, the Source just notifies it when everything is ready. The
MSG_XFERREADY notice is used for this purpose.

» Request that the Source’s user interface be disabled. This notification should be sent
by the Source to the application when the user clicks on the “Close” button of the
Source’s user interface. The MSG_CLOSEDSREQ notice is used for this purpose.

* Notify the application that the OK button has been pressed, accepting the changes the
user has made. This is only used if the Source is opened with DG_CONTROL /
DAT_USERINTERFACE / MSG_ENABLEDSUIONLY. The MSG_CLOSEDSOK noatice is
used for this purpose.

» A Device Event has occurred. This notification is sent by the Source to the Application
when a specific event has occurred, but only if the Application gave the Source prior
instructions to pass along such events. The MSG_DEVICEEVENT notice is used for this
purpose.

These notices are presented to the application in its event (or message) loop. The process used
for these notifications is covered more fully in Chapter 3 in the discussion of the application’s
event loop.

TWAIN 1.9 Specification

Technical Overview

The Use of Operation Triplets

The DSM_Entry() and DS_Entry() functions are used to communicate operations. An
operation is an action that the application or Source Manager invokes. Typically, but not
always, it involves using data or modifying data that is indicated by the last parameter (pData)
in the function call.

Requests for actions occur in one of these ways:

From To Using this function
The application The Source Manager DSM_Entry with the pDest parameter set
to NULL
The application The Source (via the DSM_Entry with the pDest parameter set
Source Manager) to point to a valid structure that identifies
the Source
The Source Manager The Source DS_Entry

The desired action is defined by an operation triplet passed as three parameters in the function
call. Each triplet uniquely, and without ambiguity, specifies a particular action. No operation
is specified by more than a single triplet. The three parameters that make up the triplet are
Data Group, Data Argument Type, and Message ID. Each parameter conveys specific
information.

Data Group (DG_xxxx)

Operations are divided into large categories by the Data Group identifier. There are
currently only two defined in TWAIN:

¢« CONTROL (The identifier is DG_CONTROL.): These operations involve control of
the TWAIN session. An example where DG_CONTROL is used as the Data Group
identifier is the operation to open the Source Manager.

¢ IMAGE (The identifier is DG_IMAGE.): These operations work with image data.
An example where DG_IMAGE is used as a Data Group is an operation that requests
the transfer of image data.

« AUDIO (The identifier is DG_AUDIO): These operations work with audio data
(supported by some digital cameras). An example where DG_AUDIO is used as a
Data Group is an operation that requests the transfer of audio data.

Data Argument Type (DAT_xxxx)

This parameter of the triplet identifies the type of data that is being passed or operated
upon. The argument type may reference a data structure or a variable. There are many
data argument types. One example is DAT_IDENTITY.

The DAT_IDENTITY type is used to identify a TWAIN element such as a Source.
Remember, from the earlier code example, data is typically passed or modified through the
pData parameter of the DSM_Entry and DS_Entry. In this case, the pData parameter
would point to a data structure of type TW_IDENTITY. Notice that the data argument type
begins with DAT_xxxx and the associated data structure begins with TW_xxxx and
duplicates the second part of the name. This pattern is followed consistently for most data
argument types and their data structures. Any exceptions are noted on the reference pages
in Chapters 7 and 8.

TWAIN 1.9 Specification 2-13

Chapter 2

Message ID (MSG_xxxx)

This parameter identifies the action that the application or Source Manager wishes to have
taken. There are many different messages such as MSG_GET or MSG_SET. They all begin
with the prefix of MSG _.

Here are three examples of operation triplets:
The triplet the application sends to the Source Manager to open the Source Manager
module is:
DG_CONTROL / DAT_PARENT /7 MSG_OPENDSM
The triplet that the application sends to instruct the Source Manager to display its Select

Source dialog box and thus allow the user to select which Source they plan to obtain data
from is:

DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

The triplet the application sends to transfer data from the Source into a file is:
DG_IMAGE / DAT_IMAGEFILEXFER /7 MSG_GET

The State-Based Protocol

2-14

The application, Source Manager, and Source must communicate to manage the acquisition of
data. Itis logical that this process must occur in a particular sequence. For example, the
application cannot successfully request the transfer of data from a Source before the Source
Manager is loaded and prepared to communicate the request.

To ensure the sequence is executed correctly, the TWAIN protocol defines seven states that
exist in TWAIN sessions. A session is the period while an application is connected to a
particular Source via the Source Manager. The period while the application is connected to the
Source Manager is another unique session. At a given point in a session, the TWAIN elements
of Source Manager and Source each occupy a particular state. Transitions to a new state are
caused by operations requested by the application or Source. Transitions can be in the forward
or backward direction. Most transitions are single-state transitions. For example, an operation
moves the Source Manager from State 1 to State 2 not from State 1 to State 3. (There are
situations where a two-state transition may occur. They are discussed in Chapter 3.)

When viewing the state-based protocol, it is helpful to remember:
States 1, 2,and 3
» Are occupied only by the Source Manager.
» The Source Manager never occupies a state greater than State 3.
States 4,5, 6,and 7

» Are occupied exclusively by Sources.
» A Source never has a state less than 4 if it is open. If it is closed, it has no state.

« If an application uses multiple Sources, each connection is a separate session and
each open Source “resides” in its own state without regard for what state the other
Sources are in.

TWAIN 1.9 Specification

Technical Overview

The State Transition Diagram looks like this;

5
Transferring

Source: Transfer Data

1

Pre-Session App: Acknowledge

end of transfer

App: Initiate
transfer

Source Manager not
loaded

6

Transfer Ready

App: Inquire Image
Information or Audio
Information

App: Load
Source Manager

| App: Unload Source
| Manager

2 Source: Transition
Source Manager when no more image :
Loaded transfers are pending ' Source: Notify App
Y

that transfer is ready

App: Get Entry Point 5

Source Enabled

Source: Show User
Interface

App: Open
Source Manager A

| App: Close Source
i Manager

Source: Notify App
to Disable Source.
App: Disable Source

3
Source Manager
Opened
User: Select Source

User: Acquire
App: Enable Source

4

*~.__ App: Close Source
= Source Open

App: Open Source
Capability Negotiation

Source Manager States Source States

Figure 2-4. State Transition Diagram

TWAIN 1.9 Specification 2-15

Chapter 2

The Description of the States

2-16

The following sections describe the states.

State 1 - Pre-Session
The Source Manager “resides” in State 1 before the application establishes a session with it.

At this point, the Source Manager code has been installed on the disk but typically is not
loaded into memory yet.

The only case where the Source Manager could already be loaded and running is under
Windows because the implementation is a DLL (hence, the same instance of the Source
Manager can be shared by multiple applications). If that situation exists, the Source
Manager will be in State 2 or 3 with the application that loaded it.

State 2 - Source Manager Loaded
The Source Manager now is loaded into memory. It is not open yet.

At this time, the Source Manager is prepared to accept other operation triplets from the
application.

State 3 - Source Manager Open
The Source Manager is open and ready to manage Sources.

The Source Manager is now prepared to provide lists of Sources, to open Sources, and to
close Sources.

The Source Manager will remain in State 3 for the remainder of the session until it is closed.
The Source Manager refuses to be closed while the application has any Sources open.

State 4 - Source Open

The Source has been loaded and opened by the Source Manager in response to an operation
from the application. It is ready to receive operations.

The Source should have verified that sufficient resources (i.e. memory, device is available,
etc.) exist for it to run.

The application can inquire about the Source’s capabilities (i.e. levels of resolution, support
of color or black and white images, automatic document feeder available, etc.). The
application can also set those capabilities to its desired settings. For example, it may
restrict a Source capable of providing color images to transferring black and white only.

Note: Inquiry about a capability can occur while the Source is in States 4, 5, 6, or 7. But,
an application can set a capability only in State 4 unless special permission is
negotiated between the application and Source.

State 5 - Source Enabled

The Source has been enabled by an operation from the application via the Source Manager
and is ready for user-enabled transfers.

If the application has allowed the Source to display its user interface, the Source will do
that when it enters State 5.

TWAIN 1.9 Specification

Technical Overview

State 6 - Transfer is Ready
The Source is ready to transfer one or more data items (images) to the application.

The transition from State 5 to 6 is triggered by the Source notifying the application that the
transfer is ready.

Before initiating the transfer, the application must inquire information about the image
(resolution, image size, etc.). If the Source supports audio, then before transferring the
image, the Application must transfer all the audio snippets that are associated with the
image.

It is possible for more than one image to be transferred in succession. This topic is covered
thoroughly in Chapter 4.

State 7 - Transferring
The Source is transferring the image to the application.
The transfer mechanism being used was negotiated during State 4.

The transfer will either complete successfully or terminate prematurely. The Source sends
the appropriate Return Code indicating the outcome.

Once the Source indicates that the transfer is complete, the application must acknowledge
the end of the transfer.

Capabilities
One of TWAIN's benefits is it allows applications to easily interact with a variety of acquisition
devices. Devices can provide image or audio data. For instance,
» Some devices have automatic document feeders.
» Some devices are not limited to one image but can transfer multiple images.
» Some devices support color images.
» Some devices offer a variety of halftone patterns.
» Some devices support a range of resolutions while others may offer different choices.
» Some devices allow the recording of audio data associated with an image.
Developers of applications need to be aware of a Source’s capabilities and may influence the

capabilities that the Source offers to the application’s users. To do this, the application can
perform capability negotiation. The application generally follows this process:

1. Determine if the selected Source supports a particular capability.

2. Inquire about the Current Value for this capability. Also, inquire about the capability’s
Default Value and the set of Available Values that are supported by the Source for that
capability.

3. Request that the Source set the Current Value to the application’s desired value. The
Current Value will be displayed as the current selection in the Source’s user interface.

4. Limit, if needed, the Source’s Available Values to a subset of what would normally be
offered. For instance, if the application wants only black and white data, it can restrict
the Source to transmit only that. If a limitation effects the Source’s user interface, the
Source should modify the interface to reflect those changes. For example, it may gray
out options that are not available because of the application’s restrictions.

5. Verify that the new values have been accepted by the Source.

TWAIN 1.9 Specification 2-17

Chapter 2

TWAIN capabilities are divided into three groups:

» CAP_xxxx: Capabilities whose names begin with CAP are capabilities that could apply
to any general Source. Such capabilities include use of automatic document feeders,
identification of the creator of the data, etc.

» ICAP_xxxx: Capabilities whose names begin with ICAP are capabilities that apply to
image devices. The “I” stands for image. (When TWAIN is expanded to support other
data transfer such as text or fax data, there will be TCAPs and FCAPs in a similar style.)

» ACAP_xxxx: Capabilities whose names begin with ACAP are capabilities that apply to
devices that support audio. The “A” stands for audio.

Capability Containers

Capabilities exist in many varieties but all have a Default VValue, Current Value, and may have
other values available that can be supported if selected. To help categorize the supported
values into clear structures, TWAIN defines four types of containers for capabilities.

Name of the Data
Structure for the Container

TW_ONEVALUE

TW_ARRAY

TW_RANGE

TW_ENUMERATION

2-18

Type of Contents

A single value whose current and default values are
coincident. The range of available values for this type of
capability is simply this single value. For example, a
capability that indicates the presence of a document
feeder could be of this type.

A rectangular array of values that describe a logical
item. Itis similar to the TW_ONEVALUE because the
current and default values are the same and there are
no other values to select from. For example, a list of the
names, such as the supported capabilities list returned
by the CAP_SUPPORTEDCAPS capability, would use
this type of container.

Many capabilities allow users to select their current
value from a range of regularly spaced values. The
capability can specify the minimum and maximum
acceptable values and the incremental step size between
values. For example, resolution might be supported
from 100 to 600 in steps of 50 (100, 150, 200, ..., 550,
600).

This is the most general type because it defines a list of
values from which the Current Value can be chosen.
The values do not progress uniformly through a range
and there is not a consistent step size between the
values. For example, if a Source’s resolution options
did not occur in even step sizes then an enumeration
would be used (for example, 150, 400, and 600).

TWAIN 1.9 Specification

Technical Overview

In general, most capabilities can have more than one of these containers applied to them
depending on how the particular Source implements the capability. The data structure for each
of these containers is defined in Chapter 8. A complete table with all defined capabilities is
located in Chapter 9. A few of the capabilities must be supported by the application and
Source. The remainder of the capabilities are optional.

Capability Negotiation and Container Types

It is very important for Application and Data Source developers to note that Container types
are dictated by the Data Source in all cases where a value is queried. Also the allowable
container types of each capability are clearly defined in Chapter 9 of the TWAIN Specification.
The only time it is appropriate for the calling Application to specify a container type is during
the MSG_SET operation. At that time, the Application must also consider the allowable
containers and types for the particular capability.

Capability Containers and String Values

The only containers that can possibly hold a string are the following:

TW_ENUMERATION
TW_ARRAY
TW_ONEVALUE

It is not possible or useful to use this type in a TW_RANGE. in fact there is no case where a
capability has been defined in Chapter 9 of the TWAIN Specification where a TW_RANGE is
allowed for a TW_STRxxxx type of value.

There are four types of TWAIN strings defined for developer use:

TW_STR32
TW_STR64
TW_STR128
TW_STR256

As of version 1.7, only the following capabilities accept strings:

CAP_AUTHOR, TW_ONEVALUE, TW_STR128
CAP_CAPTION, TW_ONEVALUE, TW_STR255
CAP_TIMEDATE, TW_ONEVALUE, TW_STR32
ICAP_HALFTONES, TW_ONEVALUE/TW_ENUMERATION/TW_ARRAY, TW_STR32

The definition of the various container types could be confusing. For example, the definition of
a TW_ONEVALUE is as follows:

/* TWON_ONEVALUE. Container for one value. */
t ypedef struct {

TWU NT16 |tenype;

TWU NT32 Item
} TWONEVALUE, FAR * pTW ONEVALUE;

At first glance, it is tempting to try placing the string into this container by assigning “Item” to
be a pointer. This is not at all consistent with the implementation of other structures in the
specification and introduces a host of problems concerning management of the memory
occupied by the string. (See TW_IDENTITY for consistent TWAIN string use)

TWAIN 1.9 Specification 2-19

Chapter 2

2-20

The correct and consistent method of holding a string in a TWAIN container is to ensure the
string is embedded in the container itself. Either a new structure is defined within the
developers code, or the added size is considered when allocating the container.

The following examples are designed to demonstrate possible methods of using TWAIN Strings
in Containers. These examples are suitable for demonstration only, and require refinement to
be put to real use.

Example 1:
TW_ONEVALUE structure defined for holding a TW_STR32 value

/* TWON_ONEVALUESTR32. Container for one value hol ding TWSTR32. */
t ypedef struct {

TWU NT16 |tenype;

TWSTR32 Item
} TWONEVALUESTR32, FAR * pTW ONEVALUESTR32;

Note: Pay attention to two-byte structure packing when defining custom container
structures.

This clearly demonstrates where the memory is allocated and where the string resides. The
data source does not have to be concerned with how the string is managed locally, and the
application does not have to be concerned with managing the string memory or contents.

Example 2:
TW_ONEVALUE structure allocated and filled with consideration of holding a TW_STR32
value (Windows Example)

HGLOBAL Al | ocat eAndFi | | OneVal ueStr32(const pTW.STR32 plnString)
{

DWORD dwCont ai ner Si ze = 0l ;

HGLOBAL hCont ai ner = NULL;

pTW ONEVALUE pOneVal ue = NULL;

pTW STR32 pString = NULL;

assert (plnString);

/1 Note: This calculation will yield a size approximately one
/1 pointer larger than that required for this container
[l (sizeof (TWUI NT32)). For sinplicity the size difference
/1l is negligible. The first TWSTR32 itemshall be |ocated
/1 imrediately after the pEnum >Def aul t| ndex menber.
dwCont ai ner Si ze = si zeof (TW.ONEVALUE) + si zeof (TW STR32);
hCont ai ner = d obal All oc(GPTR, dwCont ai nerSi ze);
i f (hCont ai ner)

pOneVal ue = (pTW ONEVALUE) G obal Lock(hCont ai ner) ;
i f (pOneVal ue)
{

pOneVal ue- >l t enifype = TWY_STR32;

pString = (pTW.STR32) & OneVal ue- >l tem

mencpy(pString, plnString, sizeof(TWSTR32));

A obal Unl ock(hCont ai ner) ;
pOneVal ue = NULL;
pString = NULL;

TWAIN 1.9 Specification

Technical Overview

}
}
return hCont ai ner;
}
Example 3:

TW_ENUMERATION structure allocated with consideration of holding TW_STR32 values
(Windows Example)

HGLOBAL Al | ocat eEnumner ati onStr32(TW.UI NT32 unNum tens)
{

DWORD dwCont ai ner Si ze = 0l ;

HGLOBAL hCont ai ner = NULL;

pTW ENUMERATI ON pEnum = NULL,;

/1 Note: This calculation will yield a size approxi mtely

/1 one pointer larger than that required for this container

/1 (sizeof (p TWU NT8)). For sinplicity the size difference is
/1 negligible. The first TWSTR32 itemshall be |ocated

/1 imrediately after the pEnum >Def aul t| ndex menber.

dwCont ai ner Si ze = si zeof (TW ENUMERATI ON) + (sizeof (TWSTR32) *
unNuml t ens) ;
hCont ai ner = d obal Al l oc(GPTR, dwCont ai nerSi ze);
i f (hCont ai ner)
{
pEnum = (pTW ENUMERATI ON) @ obal Lock(hCont ai ner) ;
i f(pEnum
{

pEnum >l temlype = TWY_STR32;
PEnum >Num t ens unNum t ens;

d obal Unl ock(hCont ai ner);
pEnum = NULL;

}
}

return hCont ai ner;

}

Example 4: Indexing a string from an Enumeration Container
pTW STR128 | ndexStr 128Fr onEnuner ati on(pTW ENUVERATI ON pEnum TW Ul NT32
unl ndex)

{
BYTE *pBegi n = (BYTE *) &Enum >l tenLi st[0];
assert (pEnum >Num t ens > unl ndex) ;
assert (pEnum >l tenifype == TWI'Y_STR128);

pBegi n += (unlndex * sizeof (TWSTR128));
return (pTW.STR128) pBegi n;

TWAIN 1.9 Specification 2-21

Chapter 2

Modes Available for Data Transfer

2-22

Native

There are three different modes that can be used to transfer data from the Source to the
application: native, disk file, and buffered memory. (At this time, TWAIN support for audio
only allows native and disk file transfers.)

Every Source must support this transfer mode. It is the default mode and is the easiest for an
application to implement. However, it is restrictive (i.e. limited to the DIB or PICT formats and
limited by available memory).

The format of the data is platform-specific:

* Windows: DIB (Device-Independent Bitmap)
» Macintosh: A handle to a Picture

The Source allocates a single block of memory and writes the image data into the block. It
passes a pointer to the application indicating the memory location. The application is
responsible for freeing the memory after the transfer.

Disk File

A Source is not required to support this transfer mode but it is recommended.

The application creates the file to be used in the transfer and ensures that it is accessible by the
Source for reading and writing.

A capability exists that allows the application to determine which file formats the Source
supports. The application can then specify the file format and file name to be used in the
transfer.

The disk file mode is ideal when transferring large images that might encounter memory
limitations with Native mode. Disk File mode is simpler to implement than the buffered mode
discussed next. However, Disk File mode is a bit slower than Buffered Memory mode and the
application must be able to manage the file after creation.

Buffered Memory

Every Source must support this transfer mode.

The transfer occurs through memory using one or more buffers. Memory for the buffers are
allocated and deallocated by the application.

The data is transferred as an unformatted bitmap. The application must use information
available during the transfer (TW_IMAGEINFO and TW_IMAGEMEMXFER) to learn about
each individual buffer and be able to correctly interpret the bitmap.

If using the Native or Disk File transfer modes, the transfer is completed in one action. With
the Buffered Memory mode, the application may need to loop repeatedly to obtain more than
one buffer of data.

Buffered Memory transfer offers the greatest flexibility, both in data capture and control.
However, it is the least simple to implement.

TWAIN 1.9 Specification

Application Implementation

This chapter provides the basic information needed to implement TWAIN at a minimum level.
In this chapter, you will find information on:

Chapter Contents

Levels of TWAIN Implementation 23
Installation of the Source Manager Software 24
Changes Needed to Prepare for a TWAIN Session 26
The DSM_Entry Call and Available Operation Triplets 31
Controlling a TWAIN session from your application 37
Error Handling 60
Requirements for an Application to be

TWAIN-Compliant 62

Advanced topics are discussed in Chapter 4. They include how to take advantage of Sources
that offer automatic feeding of multiple images.

Levels of TWAIN Implementation

Application developers can choose to implement TWAIN features in their application along a
range of levels.

» At the minimum level: The application does not have to take advantage of capability
negotiation or transfer mode selection. Using TWAIN defaults, it can just acquire a
single image in the Native mode.

« Atagreater level: The application can negotiate with the Source for desired capabilities
or image characteristics and specify the transfer arrangement. This gives the application
more control over the type of image it receives. To do this, developers should follow the
instructions provided in this chapter and use information from Chapter 4, as well.

» At the highest level: An application may choose to negotiate capabilities, select transfer
mode, and create/present its own user interfaces instead of using the built-in ones
provided with the Source Manager and Source. Again, refer to this chapter and
Chapter 4.

TWAIN 1.9 Specification 3-23

Chapter 3

Installation of the Source Manager Software

The TWAIN Source Manager for Microsoft Windows consists of four binaries that are owned
by the TWAIN Working Group (TWG). These binaries are built and distributed by the TWG
for Windows 3.x /7 9x / NT, and built and distributed by Microsoft (as protected system files)
for all versions of Windows 2000. These files are as follows:

TWAIN_32.DLL The 32-bit Source Manager. This is the DLL that 32-bit
applications must use to communicate with TWAIN.
TWAIN.DLL The 16-bit Source Manager. This is the DLL that 16-bit

applications must use to communicate with TWAIN.

TWUNKER_32.EXE This program works invisibly under the hood to allow 16-bit
applications to communicate with 32-bit Sources.

TWUNKER_16.EXE This program works invisibly under the hood to allow 32-bit
applications to communicate with 16-bit Sources. Note that 16-bit
Sources will not run correctly on Windows NT systems.

For a TWAIN-compliant application or Source to work properly, a Source Manager must be
installed on the host system. To guarantee that a Source Manager is available, ship a copy of
the latest Source Manager on your product’s distribution disk and provide the user with an
installer or installation instructions as suggested below. To ensure that the most recent version
of the Source Manager is available to you and your user on their computer, you must do the
following:

1. Look for a Source Manager:

a. On Windows systems: Look for the file names TWAIN.DLL, TWAIN_32.DLL,
TWUNK _16.EXE, and TWUNK_32.EXE in the Windows directory (this is typically
C:AWindows on Windows 3.1/95/98, and C:\Winnt on Windows NT).

b. On Macintosh systems: Look for the file name “TWAIN Source Manager” in the
Extensions Folder in the active System Folder.

2. If no Source Manager is currently installed, install the Source Manager sent out with
your application.

3. If aSource Manager already exists, check the version of the installed Source Manager.
If the version provided with your application is more recent, rename the existing one as
follows and install the Source Manager you shipped. To rename the existing Source
Manager:

a. On Windows systems: Rename the four files to be TWAIN.BAK, TWAIN_32.BAK,
TWUNK_16.BAK, and TWUNK_32.BAK.

b. On Macintosh systems: Move the Source Manager to the Extensions (Disabled)
folder.

3-24 TWAIN 1.9 Specification

Application Implementation

How to Install the Source Manager on Microsoft Windows Systems

To allow the comparison of Source Manager versions, the Microsoft Windows Source Manager
DLL has version information built into it which conforms to the Microsoft File Version
Stamping specification. Application developers are strongly encouraged to take advantage of
this in their installation programs. Microsoft provides the File Version Stamping Library,
VER.DLL, which should be used to install the Source Manager.

VER.DLL, VER.LIB and VER.H are included in this Toolkit; VER.DLL may be freely copied and
distributed with your installation program. Of course, your installation program will have to
link to this DLL to use it. Documentation on the File Version Stamping Library API can be
found on the Microsoft Windows SDK.

The following code fragment demonstrates how the VerlnstallFile() function provided in
VER.DLL can be used to install the Source Manager into the user’s Windows directory.

Note that the following example assumes that your installation floppy disk is in the A: drive
and the Source Manager is in the root of the installation disk.

#i ncl ude "w ndows. h"
#i ncl ude "ver.h"
#i ncl ude "stdio. h"

/1 Max file nane length is based on 8 dot 3 file name convention.
#def i ne MAXFNAMELEN 12

/1 Max path nane length is based on Get WndowsDi rectory()

/1 docurentati on.

#def i ne MAXPATHLEN 144

VO D Instal|lWnSM (VO D)

{
DWORD dwl nstall Result;
WORD wTInpFi | eLen = MAXPATHLEN,;
WORD wiLen;

char szSrcDi r [MAXPATHLEN] ;
char szDst Di r [MAXPATHLEN] ;
char szCur Di r [MAXPATHLEN] ;
char szTnpFi | e[MAXPATHLEN] ;

wLen = Get WndowsDirectory(szDstDir, MAXPATHLEN);
if (!wien || wLen>MAXPATHLEN)
{

return; /1 failure getting Wndows dir

}

strcpy(szCurDir, szDstDir);
strepy(szSrcDir, "a:\\");

dw nstall Result = Verlnstall File(VIFF_DONTDELETEOLD,

"TWAI N_32. DLL",
"TWAI N_32. DLL",
szSrchir,

szDstDir,

szCurDir,

szTnpFi | e,

&WTnpFi | eLen);

TWAIN 1.9 Specification 3-25

Chapter 3

/1 If VerlnstallFile() left a tenporary copy of the new
/1 file in DstDir be sure to delete it. This happens
/1 when a nore recent version is already installed.
if (dwmnstall Result & VIF_TEMPFILE &&
((wTrpFi | eLen - MAXPATHLEN) > MAXFNAMELEN))

{
/1 when dst path is root it already ends in ‘\’
if (szDstDir[wLen-1] != "\\")
{
strcat(szDstDir, "\\");
}
strcat(szDstDir, szTnpFile);
remove(szDstDir);
}

}

You should enhance the above code so that it handles the other three files (TWAIN.DLL,
TWUNK _16.EXE, and TWUNK_32.EXE), as well as fixing it to handle low memory and other
error conditions, as indicated by the dwlnstallResult return code. Also note that the above code
does not leave a backup copy of the user’s prior Source Manager on their disk, but you should
do this. Copy the older versions to TWAIN.BAK, TWAIN_32.BAK, TWUNK_16.BAK, and
TWUNK_32.BAK.

How to Install the Source Manager on Macintosh Systems

The file "TWAIN Source Manager" should be installed in the Extensions folder of the active
System Folder, if the version being installed is newer than the existing version, or there is no
previous version of this file.

The folder "TWAIN Data Sources" should be created in the Extensions folder if it does not exist.

If you are a scanner vendor, install your scanner data sources into the Extensions: TWAIN Data
Sources: folder you created.

The file "Source Manager" should be installed in the Preferences: TWAIN: folder if it does not
exist, or if its version number is higher than the existing file.

The last step is very important. The file you are installing is the 68k shim file that routes calls
made by older applications to the new DSM. Without this file, older applications will not be
able to use the TWAIN DSM properly.

Changes Needed to Prepare for a TWAIN Session

3-26

There are three areas of the application that must be changed before a TWAIN session can even
begin. The application developer must:

1. Alter the application’s user interface to add Select Source and Acquire menu choices
2. Include the file called TWAIN.H in your application

3. Alter the application’s event loop

TWAIN 1.9 Specification

Application Implementation

Alter the Application’s User Interface to Add Select Source and Acquire Options

As mentioned in the Technical Overview chapter, the application should include two menu
items in its File menu: Select Source... and Acquire.... It is strongly recommended that you use
these phrases since this consistency will benefit all users.

Windows Macintosh
New New...
Open... Open...
save Close
Acquire... Save
Select Source... Save As...
i Acquire...
Print
Print Setup... Select Source...
Exit Page Setup...

Print...
Quit

Figure 3-1. User Interface for Selecting a Source and Acquiring Options

Note the following:

When this is selected: The application does this:

Select Source... The application requests that the Source Manager’s Select Source
Dialog Box appear (or it may display its own version). After the
user selects the Source they want to use, control returns to the
application.

Acquire... The application requests that the Source display its user
interface. (Again, the application can create its own version of a
user interface or display no user interface.)

Detailed information on the operations used by the application to successfully acquire data is
provided later in this chapter in the section called “Controlling a TWAIN Session from your
Application.”

Include the TWAIN.H File in Your Application

The TWAIN.H file that is shipped with this TWAIN Developer’s Toolkit contains all of the
critical definitions needed for writing a TWAIN-compliant application or Source. Be sure to
include it in your application’s code and print out a copy to refer to while reading this chapter.

The TWAIN.H file contains:

Category Prefix for each item

Data Groups DG_

Data Argument Types DAT_

Messages MSG_

Capabilities CAP_, ICAP_, or ACAP_

Return Codes TWRC_

Condition Codes TWCC_

Type Definitions TW_

Structure Definitions TW_

Entry points These are DSM_Entry and DS_Entry

In addition, there are many constants defined in TWAIN.H which are not listed here.

TWAIN 1.9 Specification 3-27

Chapter 3

Alter the Application’s Event Loop

3-28

Events include activities such as key clicks, mouse events, periodic events, accelerators, etc.
Every TWAIN-compliant application, whether on Macintosh or Windows, needs an event loop.
(On Windows, these actions are called messages but that can be confusing because TWAIN
uses the term messages to describe the third parameter of an operation triplet. Therefore, we
will refer to these key clicks, etc. as events in this section generically for both Windows and
Macintosh.)

During a TWAIN session, the application opens one or more Sources. However, even if several
Sources are open, the application should only have one Source enabled at any given time. That
is the Source from which the user is attempting to acquire data.

Altering the event loop serves three purposes:

» Passing events from the application to the Source so it can respond to them
» Notifying the application when the Source is ready to transfer data or have its user
interface disabled

» Notifying the application when a device event occurs.

Event Loop Modification - Events in State 4

Please note that with TWAIN 1.8 and the addition of the DG_CONTROL /7 DAT_NULL /
MSG_DEVICEEVENT message, it is possible to receive events after the Source has been opened
but before it has been enabled (State 4). However, these events will not be sent from the Source
to the Application unless the Application has negotiated for specific events using
CAP_DEVICEEVENTS. Events posted in this way must use the hwnd passed to them by the
DG_CONTROL / DAT_PARENT /7 MSG_OPENDS message. Sources are required to have all
device events turned off when they are opened to support backward compatibility with older
TWAIN applications.

Event Loop Modification - Passing events (The first purpose)

While a Source is enabled, all events are sent to the application’s event loop. Some of the
events may belong to the application but others belong to the enabled Source. To ensure that
the Source receives and processes its events, the following changes are required:

The application must send all events that it receives in its event loop to the Source as long as
the Source is enabled. The application uses:

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT

The TW_EVENT data structure used looks like this:
t ypedef struct {

TW MVEMREF pEvent ; /* Wndows pMSG or MAC pEvent */
TW_ Ul NT16 TWvessage; /* TWnessage from Source to */
/* the application */

} TWEVENT, FAR *pTW EVENT;

The pEvent field points to the EventRecord (Macintosh) or message structure (Windows).

TWAIN 1.9 Specification

Application Implementation

The Source receives the event from the Source Manager and determines if the event belongs to
it.

 If it does, the Source processes the event. It then sets the Return Code to
TWRC_DSEVENT to indicate it was a Source event. In addition, it should set the
TWMessage field of the TW_EVENT structure to MSG_NULL.

 If it does not, the Source sets the Return Code to TWRC_NOTDSEVENT meaning it is
not a Source event. In addition, it should set the TWMessage field of the TW_EVENT
structure to MSG_NULL. The application receives this information from DSM_Entry
and should process the event in its event loop as normal.

On Macintosh only, the application must periodically send NULL events to the Source to allow
notifications from Source to application.

Event Loop Modification - Notifications from Source to application (The second and third
purpose)

When the Source has data ready for a data transfer or it wishes to request that its user interface
be disabled, it needs to communicate this information to the application asynchronously.

These notifications appear in the application’s event loop. They are contained in the
TW_EVENT.TWMessage field. The four notices of interest are:

 MSG_XFERREADY to indicate data is ready for transfer
 MSG_CLOSEDSREQ to request that the Source’s user interface be disabled

» MSG_CLOSEDSOK to request that the Source’s user interface be disabled (special case
for use with DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY).

« MSG_DEVICEEVENT to report that a device event has occurred.

Therefore, the application’s event loop must always check the TW_EVENT.TWMessage field
following a DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT call to determine if it is
the simple MSG_NULL or critical MSG_XFERREADY or MSG_CLOSEDSREQ. Information
about how the application should respond to these two special notices is detailed later in this
chapter in the “Controlling a TWAIN Session from your Application” section.

How to Modify the Event Loop for Microsoft Windows

This section illustrates typical modifications needed in an Microsoft Windows application to
support TWAIN-connected Sources.

TW EVENT twEvent;
TW.INT16 rc;
whil e (GetMessage ((LPMSG &nmsg, NULL, 0, 0)) {
rc = TWRC_NOTDSEVENT;
if Source is enabled {
t wEvent . pEvent = (TW MEMREF) &nsg;
twEvent . TWWessage = MSG_NULL;
rc = (*pDSM_Entry) (pAppl d,
pSour cel d,
DG_CONTROL,
DAT_EVENT,
MSG_PROCESSEVENT,
(TW_MEVREF) &t wEvent) ;

TWAIN 1.9 Specification 3-29

Chapter 3

3-30

/'l check for nmessage from Source
switch (twEvent. TWWvessage) {
case MSG_XFERREADY:
Set upAndTr ansf er | mage(NULL) ;
br eak;
case M5SG_CLOSEDSREQ
Di sabl eAndd oseSour ce(NULL) ;
br eak;
case M5G_CLOSEDSCK:
Di sabl eAndd oseSour ce(NULL) ;
Get Cust onDsDat a() ;
br eak;
case MSG_NULL:
/1 no message returned fromthe source
br eak;

}

/1 Source didn't process it, so we wll

== TWRC_NOTDSEVENT) {

Tr ansl at eMessage((LPMSG &nsg);
Di spat chMessage((LPMSG &nsg);

Note:

Source writers are advised to keep stack space usage to a minimum. Application
writers should be also be aware that, in the Windows environment, sources run in
their calling application’s data space. They depend upon the application to reserve
enough stack space for the source to be able to perform its various functions. For this
reason, applications should define enough stack space in their linker DEF files for the
sources that they might use.

How to Modify the Event Loop for Macintosh

This section illustrates typical modifications needed in a Macintosh application to support
TWAIN-connected Sources.

TW EVENT
TW I NT16
Event Record

twEvent ;
rc;
t heEvent ;

whil e (! Done){

I f Source is Enabl ed{

/1 Send periodic NULL events to the Source
twEvent . pEvent = NULL,
twEvent . TWWessage = MSG_NULL;
rc = (*pDSM Entry) (pAppl D,
pSour cel D,
DG_CONTROL,
DAT_EVENT,
MSG_PROCESSEVENT,
(TW_MEVREF) &t wEvent) ;
[l check for message from Source
switch (twEvent. TWWMessage) {
case MSG_XFERREADY:
Set upl mage(NULL) ;
br eak;

TWAIN 1.9 Specification

Application Implementation

case MSG_CLOSEDSREQ
Di sabl eSour ce(NULL) ;
br eak;

case M5SG_CLOSEDSCK:
Di sabl eAndd oseSour ce(NULL) ;
Get Cust onDsDat a() ;
br eak;

case MSG_NULL:
/I no message was returned fromthe Source
br eak;

}

}
i f (GetNextEvent(everyEvent, &t heEvent)){ /1 or Vit NextEvent ()

If Source is Enabl ed{
twEvent . pEvent = &t heEvent;
twEvent . TWWessage = MSG_NULL;
rc = (*pDSM Entry) (pAppl D,
pSour cel D,
DG_CONTROL,
DAT_EVENT,
MSG_PROCESSEVENT,
(TW_MEVREF) &t wEvent) ;

/'l check for message from Source
switch (twEvent. TWWvessage) {
case MSG_XFERREADY:
Set upl mage(NULL) ;
br eak;
case MSG_CLOSEDSREQ
Di sabl eSour ce(NULL) ;
br eak;
case MSG_CLOSEDSCK:
Di sabl eAndd oseSour ce(NULL) ;
Get Cust onDsDat a() ;
br eak;

case MSG_NULL:
/I no message was returned fromthe Source
br eak;

}
if (rc == TWRC_NOTDSEVENT)
Message=Deal Wt hEvent (& heEvent) ;
}

} else
Message=Deal Wt hEvent (& heEvent) ;

The DSM_Entry Call and Available Operation Triplets

As described in the Technical Overview chapter, all actions that the application invokes on the
Source Manager or Source are routed through the Source Manager. The application passes the
request for the action to the Source Manager via the DSM_Entry function call which contains an

TWAIN 1.9 Specification 3-31

Chapter 3

operation triplet describing the requested action. In code form, the DSM_Entry function looks

like this:
On Windows:
TW Ul NT16 FAR PASCAL DSM Entry

(pTWIDENTITY pOigin, /1 source of message
PTW.I DENTITY pDest, /1 destination of nessage
TW_UI NT32 DG, /1 data group ID: DG xxxx
TW Ul NT16 DAT, /1 data argunment type: DAT_XXXX
TW_ Ul NT16 MSG /1 message | D: MBG_XxxX
TW MVEMREF pDat a /1 pointer to data

)

On Macintosh:
FAR PASCAL TW U NT16 DSM Entry

(pTWIDENTITY pOigin, /1 source of nessage
pTW.I DENTITY pDest, /1 destination of nessage
TW_ UI NT32 DG, /1 data group ID DG xxxx
TW_ Ul NT16 DAT, /1 data argument type: DAT_XXXX
TW_UI NT16 MSG /1 nmessage I D: MBG_XXXX
TW MEMREF pDat a /! pointer to data
)
The DG, DAT, and MSG parameters contain the operation triplet. The parameters must follow
these rules:
pOrigin

References the application’s TW_IDENTITY structure. The contents of this structure must
not be changed by the application from the time the connection is made with the Source
Manager until it is closed.

pDest
Set to NULL if the operation’s final destination is the Source Manager.
Otherwise, set to point to a valid TW_IDENTITY structure for an open Source.

DG_xxxx

Data Group of the operation. Currently, only DG_CONTROL, DG_IMAGE, and
DG_AUDIO are defined. Custom Data Groups can be defined.

DAT_xxxx

Designator that uniquely identifies the type of data “object” (structure or variable)
referenced by pData.

MSG_Xxxx

Message specifies the action to be taken.

pData

Refers to the TW_xxxx structure or variable that will be used during the operation. Its type
is specified by the DAT_xxxx. This parameter should always be typecast to TW_MEMREF
when it is being referenced.

3-32 TWAIN 1.9 Specification

Application Implementation

Operation Triplets - Application to Source Manager

There are nine operation triplets that can be sent from the application to be consumed by the
Source Manager. They all use the DG_CONTROL data group and they use three different data
argument types: DAT_IDENTITY, DAT_PARENT, and DAT_STATUS. The following table
lists the data group, data argument type, and messages that make up each operation. The list is
in alphabetical order not the order in which they are typically called by an application. Details
about each operation are available in reference format in Chapter 7.

Control Operations from Application to Source Manager
DG_CONTROL / DAT_IDENTITY

MSG_CLOSEDS: Prepare specified Source for unloading
MSG_GETDEFAULT : Get identity information of the default Source
MSG_GETFIRST : Get identity information of the first available Source
MSG_GETNEXT : Get identity of the next available Source
MSG_OPENDS: Load and initialize the specified Source

MSG_USERSELECT : Present “Select Source” dialog

DG_CONTROL / DAT_PARENT
MSG_CLOSEDSM : Prepare Source Manager for unloading

MSG_OPENDSM : Initialize the Source Manager
DG_CONTROL / DAT_STATUS
MSG_GET: Return Source Manager’s current Condition Code

Operation Triplets - Application to Source

The next group of operations are sent to a specific Source by the application. These operations
are still passed via the Source Manager using the DSM_Entry call. The first set of triplets use
the DG_CONTROL identification for their data group. These are operations that could be
performed on any kind of TWAIN device. The second set of triplets use the DG_IMAGE
identification for their data group which indicates these operations are specific to image data.
Details about each operation are available in reference format in Chapter 7.

Control Operations from Application to Source

DG_CONTROL / DAT_CAPABILITY

MSG_GET : Return a Capability’s valid value(s) including current and default
values

MSG_GETCURRENT : Get a Capability’s current value
MSG_GETDEFAULT : Get a Capability’s preferred default value (Source specific)

MSG_RESET : Change a Capability’s current value to its TWAIN-defined default
(See Chapter 9)

MSG_SET : Change a Capability’s current and/or available value(s)

DG_CONTROL / DAT_DEVICEEVENT

MSG_GET: Get an event from the Source (issue this call only in response to a
DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT from the
Source)

TWAIN 1.9 Specification 3-33

Chapter 3

3-34

DG_CONTROL / DAT_EVENT
MSG_PROCESSEVENT : Pass an event to the Source from the application

DG_CONTROL / DAT_FILESYSTEM

MSG_AUTOMATICCAPTUREDIRECTORY : Select directory to receive automatically
captured images

MSG_CHANGEDIRECTORY : Change the current domain, host, directory, or device.
MSG_COPY : Copy files
MSG_CREATEDIRECTORY : Create a directory

MSG_DELETE : Delete a file or directory

MSG_FORMATMEDIA : Format a storage device

MSG_GETCLOSE : Close a context created by a call to MSG_GETFILEFIRST
MSG_GETFIRSTFILE : Get the first file in a directory

MSG_GETINFO : Get information about the current file context
MSG_RENAME : Rename a file

DG_CONTROL / DAT_PASSTHRU / MSG_PASSTHRU

MSG_PASSTHRU : Special command for the use by Source vendors when writing

diagnostic Applications
DG_CONTROL / DAT_PENDINGXFERS

MSG_ENDXFER : Application acknowledges or requests the end of data transfer
MSG_GET : Return the number of transfers the Source is ready to supply
MSG_RESET : Set the number of pending transfers to zero

MSG_STOPFEEDER : Stop ADF without ending session
DG_CONTROL / DAT_SETUPFILEXFER

MSG_GET: Return info about the file that the Source will write the acquired
data into

MSG_GETDEFAULT : Return the default file transfer information

MSG_RESET : Reset current file information to default values

MSG_SET : Set file transfer information for next file transfer

DG_CONTROL / DAT_SETUPFILEXFER2

MSG_GET: Return info about the file that the Source will write the acquired
data into

MSG_GETDEFAULT : Return the default file transfer information

MSG_RESET : Reset current file information to default values

MSG_SET : Set file transfer information for next file transfer

DG_CONTROL / DAT_SETUPMEMXFER

MSG_GET: Return Source’s preferred, minimum, and maximum transfer

buffer sizes

DG_CONTROL / DAT_STATUS
MSG_GET : Return the current Condition Code from specified Source

TWAIN 1.9 Specification

Application Implementation

DG_CONTROL / DAT_USERINTERFACE
MSG_DISABLEDS : Cause Source’s user interface to be taken down

MSG_ENABLEDS : Cause Source to prepare to display its user interface
DG_CONTROL / DAT_XFERGROUP
MSG_GET: Return the Data Group (currently DG_IMAGE or a custom data

group) for the upcoming transfer

There are five more DG_CONTROL operations for communications between the Source
Manager and the Source. They are discussed in Chapter 5.

Image Operations from Application to Source
DG_IMAGE / DAT_CIECOLOR

MSG_GET : Return the CIE XYZ information for the current transfer

DG_IMAGE / DAT_GRAYRESPONSE

MSG_RESET : Reinstate identity response curve for grayscale data

MSG_SET : Source uses specified response curve on grayscale data

DG_IMAGE / DAT_IMAGEFILEXFER

MSG_GET: Initiate image acquisition using the Disk File transfer mode

DG_IMAGE / DAT_IMAGEINFO

MSG_GET : Return information that describes the image for the next transfer

DG_IMAGE / DAT_IMAGELAYOUT

MSG_GET: Describe physical layout / position of “original” image

MSG_GETDEFAULT : Default information on the layout of the image

MSG_RESET : Set layout information for the next transfer to defaults

MSG_SET : Set layout for the next image transfer

DG_IMAGE / DAT_IMAGEMEMXFER

MSG_GET: Initiate image acquisition using the Buffered Memory transfer
mode

DG_IMAGE / DAT_IMAGENATIVEXFER

MSG_GET : Initiate image acquisition using the Native transfer mode

DG_IMAGE / DAT_JPEGCOMPRESSION

MSG_GET : Return JPEG compression parameters for current transfer

MSG_GETDEFAULT : Return default JPEG compression parameters

MSG_RESET : Use Source’s default JPEG parameters on JPEG transfers

MSG_SET : Use specified JPEG parameters on JPEG transfers

DG_IMAGE / DAT_PALETTES

MSG_GET: Return palette information for current transfer

MSG_GETDEFAULT : Return Source’s default palette information for current pixel type

MSG_RESET : Use Source’s default palette for transfer of this pixel type

MSG_SET : Use specified palette for transfers of this pixel type

TWAIN 1.9 Specification 3-35

Chapter 3

DG_IMAGE / DAT_RGBRESPONSE

MSG_RESET : Use Source’s default (identity) RGB response curve
MSG_SET : Use specified response curve for RGB transfers
DG_AUDIO / DAT_AUDIOFILEXFER

MSG_GET : Transfers audio data in file mode

DG_AUDIO / DAT_AUDIOINFO

MSG_GET: Gets information about the current transfer
DG_AUDIO / DAT_AUDIONATIVEXFER

MSG_GET: Transfers audio data in native mode

DSM_Entry Parameters

3-36

The parameters for the DG_xxxx, DAT_xxxx, and MSG_xxxx fields are determined by the
operation triplet. The other parameters are filled as follows:

pOrigin
Refers to a copy of the application’s TW_IDENTITY structure.

pDest

If the operation’s destination is the Source Manager: Always holds a value of NULL. This
indicates to the Source Manager that the operation is to be consumed by it not passed on to
a Source.

If the operation’s destination is a Source: This parameter references a copy of the Source’s
TW_IDENTITY structure that is maintained by the application. The application received
this structure in response to the DG_CONTROL / DAT_IDENTITY / MSG_OPENDS
operation sent from the application to the Source Manager. This is discussed more in the
next section (Controlling a TWAIN Session from your Application - State 3 to 4).

pData

Always references a structure or variable corresponding to the TWAIN type specified by
the DAT_xxxx parameter. Typically, but not always, the data argument type name
corresponds to a TW_xxxx data structure name. For example, the DAT_IDENTITY
argument type uses the corresponding TW_IDENTITY data structure. All data structures
can be seen in the file called TWAIN.H. The application is responsible for allocating and
deallocating the structure or element and assuring that pData correctly references it.

Note that there are two cases when the Source, rather than the application, allocates a
structure that is used during an operation.

* One occurs during DG_CONTROL / DAT_CAPABILITY / MSG_GET,
MSG_GETCURRENT, MSG_GETDEFAULT, and MSG_RESET operations. The
application still allocates *pData but the Source allocates a structure referenced by
*pData called a “container structure”.

e The other occurs during the DG_IMAGE / DAT_JPEGCOMPRESSION operations.
The topic of data compression is covered in Chapter 4.

In all cases, the application still deallocates all structures.

TWAIN 1.9 Specification

Application Implementation

Controlling a TWAIN Session from Your Application

In addition to the preparations discussed at the beginning of this chapter, the application must
be modified to actually initiate and control a TWAIN session.

The session consists of the seven states of the TWAIN protocol as introduced in the Technical
Overview. However, the application is not forced to move the session from State 1 to State 7
without stopping. For example, some applications may choose to pause in State 3 and move
among the higher states (4 - 7) to repeatedly open and close Sources when acquisitions are
requested by the user. Another example of session flexibility occurs when an application
transfers multiple images during a session. The application will repeatedly move the session
from State 6 to State 7 then back to State 6 and forward to State 7 again to transfer the next
image.

For the sake of simplicity, this chapter illustrates moving the session from State 1 to State 7 and
then backing it out all the way from State 7 to State 1. The diagram on the next page shows the
operation triplets that are used to transition the session from one state to the next. Detailed
information about each state and its associated transitions follow. The topics include:

» Load the Source Manager and Get the DSM_Entry (State 1 to 2)

» Open the Source Manager (State 2 to 3)

 Select the Source (during State 3)

e Open the Source (State 3 to 4)

» Negotiate Capabilities with the Source (during State 4)

» Request the Acquisition of Data from the Source (State 4 to 5)

* Recognize that the Data Transfer is Ready (State 5 to 6)

 Start and Perform the Transfer (State 6 to 7)

» Conclude the Transfer (State 7 to 6 to 5)

» Disconnect the TWAIN Session (State 5 to 1 in sequence)

Note: Sources and Applications that support the DAT_FILESYSTEM operation may negotiate
and select different device contexts immediately after the opening of a Source. For
example, an Application may choose to browse through the stored images on a digital
camera, rather than treat it as a real-time capture device.

TWAIN 1.9 Specification 3-37

Chapter 3

7
Transferring

TWAIN States

Data is Transfered

DG_CONTROL/
DAT_PENDINGXFERS/
MSG_ENDXFER

1

Pre-Session DG_IMAGE/

DAT_IMAGExxxXFER/
MSG_GET

Source Manager not loaded

Transfer Ready

Source ready to transfer image(s);
TW_PENDINGXFERS.Count !=0;

App Inquire info on the transfer:
TW_IMAGEINFO

Load Source Manager
Win: DLL
Mac: Code Resource

! Unload
Source Manager

if TW_PENDINGXFERS.Count =0
Transition is Automatic 1
else DG_CONTROL/
DAT_PENDINGXFERS/ 1
MSG_RESET

2
Source Manager
Loaded

Source Manager is ready to
establish a session with App;
Get Entry Point:
DSM_Entry()

App Receives
MSG_XFERREADY

Source Enabled

if ShowUlI
Source User Interface

else

Source Begins Data

Acquisition Process

DG_CONTROL/ Y

DAT_PARENT/

MSG_OPENDSM I

| DG_CONTROL/
DAT_PARENT/

MSG_CLOSEDSM DG_CONTROL/

DAT_USERINTERFACE/] 7y

3 MSG_DISABLEDS
(if TW_USERINTERFACE. |
Source Manager Showll = TRUE
O en send only after app receives |
p MSG_CLOSEDSREQ)

Session Established;
Select Source...

DG_CONTROL/
DAT_USERINTERFACE/
MSG_ENABLEDS

=< DG_CONTROL/
S < DAT_IDENTITY/
=< MSG_CLOSEDS

|
|
v

DG_CONTROL/
DAT_IDENTITY/
MSG_OPENDS

4
Source Open

Source Loaded in Memory;
Capability Negotiation;
Acquire...

Source Manager
States

Source States

Figure 3-2. TWAIN States

3-38 TWAIN 1.9 Specification

Application Implementation

State 1to 2 - Load the Source Manager and Get the DSM_Entry
The application must load the Source Manager before it is able to call its DSM_Entry point.

Operations Used:

No TWAIN operations are used for this transition. Instead,
On Windows:
Load TWAIN_32.DLL using the LoadLibrary() routine.
Get the DSM_Entry by using the GetProcAddress() call.

On Macintosh:

If you Weak Linked against the Source Manager, you can tell if the library was loaded by
comparing DSM_Entry with kUnresolvedCFragSymbolAddress.

On Windows:

The application can load the Source Manager by doing the following:
DSMENTRYPROC ~ pDSM Entry;

HANDLE hDSM.i b;
char szSMDir;
OFSTRUCT of ;

/1 check for the existence of the TWAIN 32.DLL file in the Wndows
/1 directory

Get W ndowsDi rectory (szSMDir, sizeof(szSMDir));

/*** Coul d have been networked drive with trailing ‘\’ ***/

if (szSMDir [(Istrlen (szSMDir) - 1)] !'= “\\")
{ I strcat(szSMDir, "\\");
}

if ((OpenFile(szSMDir, &of, OF_EXIST) I= -1)

/1l load the DLL
if (hDSMDLL = LoadLibrary(“TWAIN_32.DLL")) != NULL)

{

/1l check if library was | oaded
i f (hDSMDLL >= (HANDLE) VALI D_HANDLE)

{
if (I pDSM_Entry = (DSMENTRYPROC) Get Pr ocAddr ess(hDSMDLL,
MAKEI NTRESOURCE (1))) != NULL)

{
if (1 pDSM Entry)
FreeLi brary(hDSMDLL) ;

}

Note, the code appends TWAIN_32.DLL to the end of the Windows directory and verifies that
the file exists before calling LoadLibrary(). Applications are strongly urged to perform a
dynamic run-time link to DSM_Entry() by calling LoadLibrary() rather than statically linking
to TWAIN_32.LIB via the linker. If the TWAIN_32.DLL is not installed on the machine,
Microsoft Windows will fail to load an application that statically links to TWAIN_32.LIB. If
the Application has a dynamic link, however, it will be able to give users a meaningful error
message, and perhaps continue with image acquisition facilities disabled.

TWAIN 1.9 Specification 3-39

Chapter 3

After getting the DSM_Entry, the application must check pDSM_Entry. If itis NULL, it means
that the Source Manager has not been installed on the user’s machine and the application
cannot provide any TWAIN services to the user. If NULL, the application must not attempt to
call *pDSM_Entry as this would result in an Unrecoverable Application Error (UAE).

On Macintosh:

The Source Manager is a shared library in the Extensions folder of the active System Folder.
When building your application, you should Weak Link against this library. At run time, you
can tell if the Source Manager was loaded by comparing DSM_Entry with
kUnresolvedCFragSymbolAddress.

The following code segment illustrates this:

if (DSM Entry == (void*) kUnresol vedCFragSynbol Addr ess)

{
/1 Weak link failed (library is not installed)
/1 DSM Entry cannot be call ed.
}
el se
{
/1 Source Manager is |oaded and
/1 DSM Enty() can be called.
}

State 2 to 3 - Open the Source Manager

3-40

The Source Manager has been loaded. The application must now open the Source Manager.

One Operation is Used:
DG_CONTROL / DAT_PARENT / MSG_OPENDSM

pOrigin
The application must allocate a structure of type TW_IDENTITY and fill in all fields except

for the Id field. Once the structure is prepared, this pOrigin parameter should point at that
structure.

During the MSG_OPENDSM operation, the Source Manager will fill in the Id field with a
unique identifier of the application. The value of this identifier is only valid while the
application is connected to the Source Manager.

The application must save the entire structure. From now on, the structure will be referred
to by the pOrigin parameter to identify the application in every call the application makes
to DSM_Entry().

The TW_IDENTITY structure is defined in the TWAIN.H file but for quick reference, it
looks like this:

/* DAT_IDENTITY ldentifies the progranilibrary/code */
/* resource. */
typedef struct {
TW_ Ul NT32 Id; /* Unique nunmber for identification*/
TW VERSI ON Versi on;
TW_ Ul NT16 Pr ot ocol Maj or;
TW_ Ul NT16 Pr ot ocol M nor;
TW_ Ul NT32 SupportedG oups;/*Bit field OR conbination */
/*of DG constants found in */
/*the TWAIN.H file */

TWAIN 1.9 Specification

Application Implementation

TW STR32 Manuf act urer;
TW STR32 Pr oduct Fami | y;
TW STR32 Pr oduct Nane;

} TWIDENTITY, FAR *pTW | DENTI TY;

pDest
Set to NULL indicating the operation is intended for the Source Manager.

pData

Typically, you would expect to see this point to a structure of type TW_PARENT but this is
not the case. This is an exception to the usual situation where the DAT field of the triplet
identifies the data structure for pData.

* On Windows: pData points to the window handle (hWnd) that will act as the
Source’s “parent”. The variable is of type TW_INT32. For 16 bit Microsoft Windows,
the handle is stored in the low word of the 32 bit integer and the upper word is set to
zero. If running under the WIN32 environment, this is a 32 bit window handle. The
Source Manager will maintain a copy of this window handle for posting messages
back to the application.

* On Macintosh: pData should be a 32-bit NULL value.

How to Initialize the TW_IDENTITY Structure
Here is a Windows example of code used to initialize the application’s TW_IDENTITY

structure.
TW.I DENTI TY Appl D /1 App’'s identity structure
ApplD.1d = 0; /1 Initialize to 0O (Source Manager
/1 will assign real value)
App! D. Ver si on. Maj or Num = 3; /1 Your app's version nunber

Appl! D. Ver si on. M nor Num = 5;

Appl! D. Ver si on. Language = TW.G_ENGLI SH_USA;

Appl D. Versi on. Country = TWCY_USA;

I strcpy (ApplD. Version.Info, "Your App's Version String");
Appl D. Prot ocol Mpaj or = TWON_PROTOCOLMAJOR,;

App! D. Prot ocol M nor = TWON_PROTOCOLM NOR;

Appl D. SupportedG oups = DG | MAGE | DG_CONTROL;

I strcpy (ApplD. Manufacturer, "App's Manufacturer");

I strcpy (ApplD.ProductFamily, "App's Product Famly");

I strcpy (Appl D. Product Nane, "Specific App Product Nane");

On Windows: Using DSM_Entry to open the Source Manager

TWU NT16 rc;

rc = (*pDSM_Entry) (&Appl D,
NULL,
DG_CONTROL,
DAT_PARENT,
MSG_OPENDSM
(TW.MEMREF) &hwhd) ;

where AppID is the TW_IDENTITY structure that the application set up to identify itself
and hwnd is the application’s main window handle.

TWAIN 1.9 Specification 3-41

Chapter 3

On Macintosh: Using DSM_Entry to open the Source Manager

rc = DSM Ent ry(&Appl D,
NULL,
DG_CONTROL,
DAT_PARENT,
MSG_OPENDSM
NULL) ;

There is no need to open the resource fork of the Source Manager. The Source Manager will
automatically open its resource fork, load any needed resources, and close it before
returning control to the application.

Note: Once a particular Data Source has been opened by the application, the resource fork
for that Data Source will remain open and at the top of the resource chain until the Data
Source is closed. Although the Source Manager will save and restore CurResFile each time
it is called, you should be aware of this if your application loads resources while acquiring
images.

State 3 - Select the Source

3-42

The Source Manager has just been opened and is now available to assist your application in the
selection of the desired Source.

One Operation is Used:
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

pOrigin
Points to the application’s TW_IDENTITY structure. The desired data type should be

specified by the application. This was done when you initialized the SupportedGroups
field in your application’s TW_IDENTITY structure.

This causes the Source Manager to make available for selection by the user only those
Sources that can provide the requested data type(s). All other Sources are grayed out.
(Note, if more than one data type were available, for example image and text, and the
application wanted to accept both types of data, it would do a bit-wise OR of the types’
constants and place the results into the SupportedGroups field.)

pDest
Set to NULL.

pData

Points to a structure of type TW_IDENTITY. The application must allocate this structure
prior to making the call to DSM_Entry. Once the structure is allocated, the application
must:

» Set the Id field to zero.

» Set the ProductName field to the null string (“\0”). (If the application wants a
specific Source to be highlighted in the Select Source dialog box, other than the
system default, it can enter the ProductName of that Source into the ProductName
field instead of null. The system default Source and other available Sources can be
determined by using the DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT,
MSG_GETFIRST and MSG_GETNEXT operations.)

Additional fields of the structure will be filled in by the Source Manager during this
operation to identify the selected Source. Make sure the application keeps a copy of this

TWAIN 1.9 Specification

Application Implementation

updated structure after completing this call. You will use it to identify the Source from
now on.

The most common approach for selecting the Source is to use the Source Manager’s Select
Source dialog box. This is typically displayed when the user clicks on your Select Source
option. To do this:

1. The application sends a DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT
operation to the Source Manager to have it display its dialog box. The dialog displays a
list of all Sources that are installed on the system that can provide data of the type
specified by the application. It highlights the Source that is the system default unless
the application requests otherwise.

2. The user selects a Source or presses the Cancel button. If no devices are available, the
Select Source Dialog’s Select/OK button will be grayed out and the user will have no
choice but to select Cancel.

3. The application must check the Return Code of DSM_Entry to determine the user’s
action.

a. If TWRC_SUCCESS: Their selected Source is listed in the TW_IDENTITY
structure pointed to by the pData parameter and is now the default Source.

b. If TWRC_CANCEL: The user either clicked Cancel intentionally or had no other
choice because no devices were listed. Do not attempt to open a Source.

c. IfTWRC_FAILURE: Use the DG_CONTROL / DAT_STATUS /7 MSG_GET
operation (sent to the Source Manager) to determine the cause. The most likely
cause is a lack of sufficient memory.

As an alternative to using the Source Manager’s Select Source dialog, the application can devise
its own method for selecting a Source. For example, it could create and display its own user
interface or simply select a Source without offering the user a choice. This alternative is
discussed in Chapter 4.

State 3to 4 - Open the Source
The Source Manager is open and able to help your application open a Source.

One Operation is Used:

DG_CONTROL / DAT_IDENTITY /7 MSG_OPENDS
pOrigin
Points to the application’s TW_IDENTITY structure.
pDest
Set to NULL.
pData
Points to a structure of type TW_IDENTITY.

Typically, this points to the application’s copy of the Source’s TW_IDENTITY structure
filled in during the MSG_USERSELECT operation previously.

However, if the application wishes to have the Source Manager simply open the default
Source, it can do this by setting the TW_IDENTITY.ProductName field to “\0” (null string)
and the TW_IDENTITY.Id field to zero.

TWAIN 1.9 Specification 3-43

Chapter 3

During the MSG_OPENDS operation, the Source Manager assigns a unique identifier to the
Source and records it in the TW_IDENTITY.Id field. Copy the resulting TW_IDENTITY
structure. Once the Source is opened, the application will point to this resulting structure
via the pDest parameter on every call that the application makes to DSM_Entry where the
desired destination is this Source.

Note: The user is not required to take advantage of the Select Source option. They may
click on the Acquire option without having selected a Source. In that case, your
application should open the default Source. The default source is either the last
one used by the user or the last one installed.

State 4 - Negotiate Capabilities with the Source

3-44

At this point, the application has a structure identifying the open Source. Operations can now
be directed from the application to that Source. To receive a single image from the Source, only
one capability, CAP_XFERCOUNT, must be negotiated now. All other capability negotiation is
optional.

Two Operations are Used:

DG_CONTROL /7 DAT_CAPABILITY / MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_SET

The parameters for each of the operations, in addition to the triplet, are these:

pOrigin
Points to the application’s TW_IDENTITY structure.

pDest

Points to the desired Source’s TW_IDENTITY structure. The Source Manager will receive
the DSM_Entry call, recognize that the destination is a Source rather than itself, and pass
the operation along to the Source via the DS_Entry function.

pData
Points to a structure of type TW_CAPABILITY.
The definition of TW_CAPABILITY is:

t ypedef struct {
TW_ Ul NT16 Cap; /* ID of capability to get or set */
TWU NT16 ConType; /* TWON ONEVALUE, TWON RANGE, */
/* TWON_ENUMERATI ON or TWON_ARRAY */
TWHANDLE hContainer; /* Handle to container of type */
/* ConType */
} TW.CAPABI LI TY, FAR *pTW CAPABI LI TY;
The Source allocates the container structure pointed to by the hContainer field when called
by the MSG_GET operation. The application allocates it when calling with the MSG_SET
operation. Regardless of who allocated it, the application deallocates the structure either
when the operation is complete or when the application no longer needs to maintain the
information.

TWAIN 1.9 Specification

Application Implementation

Each operation serves a special purpose:

MSG_GET

Since Sources are not required to support all capabilities, this operation can be used to
determine if a particular TWAIN-defined capability is supported by a Source. The
application needs to set the Cap field of the TW_CAPABILITY structure to the identifier
representing the capability of interest. The constants identifying each capability are listed
in the TWAIN.H file.

If the capability is supported and the operation is successful, it returns the Current, Default,
and Available values. These values reflect previous MSG_SET operations on the capability
which may have altered them from the TWAIN default values for the capability.

This operation may fail due to several causes. If the capability is not supported by the
Source, the Return Code will be TWRC_FAILURE and the condition code will be one of the
following:

TWCC_CAPUNSUPPORTED Capability not supported by Source

TWCC_CAPBADOPERATION Operation not supported by capability

TWCC_CAPSEQERROR Capability has dependency on other capability
Applications should be prepared to receive the condition code TWCC_BADCAP from
Sources written prior to TWAIN 1.7, which maps to any of the three situations mentioned
above.

MSG_SET

Changes the Current or Available Value(s) of the specified capability to those requested by
the application. The application may choose to set just the capability’s Current Value or it
may specify a list of values for the Source to use as the complete set of Available Values for
that capability.

Note: Source is not required to limit values based on the application’s request although it
is strongly recommended that they do so. If the Return Code indicates
TWRC_FAILURE, check the Condition Code. A code of TWCC_BADVALUE can
mean:

» The application sent an invalid value for this Source’s range.
» The Source does not allow the setting of this capability.

» The Source doesn’t allow the type of container used by the application to set this
capability.

Capability negotiation gives the application developer power to guide the Source and control
the images they receive from the Source. The negotiation typically occurs during State 4. The
following material illustrates only one very basic capability and container structure. Refer to
Chapter 4 for a more extensive discussion of capabilities including information on how to delay
the negotiation of some capabilities beyond State 4.

Note: Itis important here to once again remind application writers to always check the
return code from any negotiated capabilities transactions.

TWAIN 1.9 Specification 3-45

Chapter 3

3-46

Set the Capability to Specify the Number of Images the Application can Transfer

The capability that specifies how many images an application can receive during a TWAIN
session is CAP_XFERCOUNT. All Sources must support this capability. Possible values for
CAP_XFERCOUNT are:

Value: Description:

1 Application wants to receive a single image.

greater than 1 Application wants to receive this specific number of images.

-1 Application can accept any arbitrary number of images during the
session. This is the default for this capability.

0 This value has no legitimate meaning and the application should not

set the capability to this value. If a Source receives this value during a
MSG_SET operation, it should maintain the Current Value without
change and return TWRC_FAILURE and TWCC_BADVALUE.

The default value allows multiple images to be transferred. The following is a simple code
example illustrating the setting of a capability and specifically showing how to limit the
number of images to one. Notice there are differences between the code for Windows and
Macintosh applications. Both versions are included here with ifdef statements for MSWIN
versus MAC.

TW CAPABI LI TY twCapability;

TW I NT16 count;
TW STATUS t WSt at us;
TW Ul NT16 rc;

#i fdef _MBWIN_
pTW ONEVALUE pval ;

#endi f

#i fdef _MAC_

TW HANDLE h;

PpTW.I NT16 pl nt 16;

#endi f

[/----- Setup for MSG_SET for CAP_XFERCOUNT

twCapabi lity. Cap = CAP_XFERCOUNT;

twCapabi l i ty. ConType = TWON_ONEVALUE;

#i fdef _MBSW N_

twCapabi | i ty. hContai ner = d obal Al |l oc(GHND, si zeof (TW ONEVALUE)) ;
pval = (pTW.ONEVALUE) d obal Lock(twCapability. hContainer);

pval - >l temlype = TWI'Y_I| NT16;

pval ->ltem = 1; //This app will only accept 1 image
A obal Unl ock(twCapability. hContai ner);

#endi f

#i fdef _MAC_

twCapabi lity. hContai ner = (TWHANDLE) h = NewHandl e(si zeof (TW ONEVALUE)) ;
((TW.ONEVALUE*) (*h)) - >l t enlType = TWIY_I NT16;

count = 1; /1 This app will only accept 1 inmge

plnt16 = ((TW ONEVALUE*) (*h))->ltem

*plnt16 = count;

#endi f

TWAIN 1.9 Specification

fl----- Set the CAP_XFERCOUNT

rc = (*pDSM_Entry) (&Appl D,
&Sour cel D,
DG_CONTROL,
DAT_CAPABI LI TY,
MSG_SET,

(TW MENVREF) & wCapabi | i ty);

#i fdef _MSW N_

G obal Free((HANDLE) t wCont ai ner . hCont ai ner) ;
#endi f

#i fdef _MAC_

Di sposHandl e((HANDLE) t wCont ai ner . hCont ai ner) ;

#endi f

[]----- Check Return Codes

/ | SUCCESS

if (rc == TWRC_SUCCESS)
//the val ue was set

/ 1 APPROXI MATI ON MADE

else if (rc == TWRC_CHECKSTATUS)
{
/1 The val ue could not be matched exactly
/1 MSG_CET to get the new current val ue
twCapabi lity. Cap = CAP_XFERCOUNT;
twCapabi lity. ConType = TWON_DONTCARELG6;

Application Implementation

//Source will specify

twCapabi lity. hContainer = NULL; //Source allocates and fills contai ner

rc = (*pDSM_Entry) (&Appl D,
&Sour cel D,
DG_CONTROL,
DAT_CAPABI LI TY,
MSG_CET,
(TW_MEVREF) &t wCapabi lity);

//remenber current val ue
#i fdef _MSWN_

pval = (pTW.ONEVALUE) d obal Lock(twCapability. hContainner);

count = pval ->ltem
//free hContainer allocated by Source

A obal Free((HANDLE) t wCapabi | i ty. hCont ai ner) ;

#endi f

#i fdef _MAC_

plnt16 = ((TWONEVALUE*) (*h))->ltem
count = *plnt16;

//free hContainer allocated by Source

Di sposeHandl e((HANDLE) t wCapabi | i ty. hCont ai ner) ;

#endi f
}

TWAIN 1.9 Specification

3-47

Chapter 3

/1 MSG_SET FAI LED
else if (rc == TWRC_FAI LURE)
{
// check Condition Code
rc = (*pDSM_Entry) (&Appl D,
&Sour cel D,
DG_CONTROL,
DAT_STATUS,
MSG_CET,
(TW_MEVREF) &t wSt at us) ;
switch (twsStatus. Conditi onCode)
{
TWCC_BADCAP:
TWCC_CAPUNSUPPORTED:
TWCC_CAPBADOPERATI ON:
TWCC_CAPSEQERROR:
/1 Sour ce does not support setting this cap
/1A'l Sources must support CAP_XFERCOUNT
br eak;
TWCC_BADDEST:
/1 The Source specified by pSourcel D is not open
br eak;
TWCC_BADVALUE:
/1 The val ue set was out of range for this Source
/1 Use MSG _CET to deternmine what setting was nade
/] See the TWRC_CHECKSTATUS case handl ed earlier
br eak;
TWCC_SEQERROR:
/1 Qperation invoked in invalid state
br eak;

}
Other Capabilities

Image Type

Although not shown, the application should be aware of the Source’s ICAP_PIXELTYPE
and ICAP_BITDEPTH. If your application cannot accept all of the Source’s Available
Values, capability negotiation should be done. (Refer to Chapter 4.)

Transfer Mode

The default transfer mode is Native. That means the Source will access the largest block of
memory available and use it to transfer the entire image to the application at once. If the
available memory is not large enough for the transfer, then the Source should fail the
transfer. The application does not need to do anything to select this transfer mode. If the
application wishes to specify a different transfer mode, Disk File or Buffered Memory,
further capability negotiation is required. (Refer to Chapter 4.)

3-48 TWAIN 1.9 Specification

Application Implementation

State 4 to 5 - Request the Acquisition of Data from the Source

The Source device is open and capabilities have been negotiated. The application now enables
the Source so it can show its user interface, if requested, and prepare to acquire data.

One Operation is Used:

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS
pOrigin
Points to the application’s TW_IDENTITY structure.

pDest
Points to the Source’s TW_IDENTITY structure.

pData
Points to a structure of type TW_USERINTERFACE.
The definition of TW_USERINTERFACE is:

typedef struct {
TW BOOL ShowU ;
TW BOOL Modal Ul ;
TW HANDLE hParent;
} TW.USERI NTERFACE, FAR *pTW USERI NTERFACE;

Set the ShowUl field to TRUE if you want the Source to display its user interface.
Otherwise, set to FALSE.

The Application will set the ModalUI field to TRUE if it wants the Source to run modal,
and FALSE if it wants the Source to run modeless. Please note that to successfully run
modal, it may be necessary for the application to disable inputs to its windows while the
Source’s GUI is running.

The application sets the hParent field differently depending on the platform on which the
application runs.

« On Windows - The application should place a handle to the Window that is acting as
the Source’s parent.

* On Macintosh - The application sets this field to NULL.

In response to the user choosing the application’s Acquire menu option, the application sends
this operation to the Source to enable it. The application typically requests that the Source
display the Source’s user interface to assist the user in acquiring data. If the Source is told to
display its user interface, it will display it when it receives the operation triplet. Modal and
Modeless interfaces are discussed in Chapters 4 and 5. Sources must check the ShowUl field
and return an error if they cannot support the specified mode. In other words it is unacceptable

for a source to ignore a ShowUJl = FALSE request and still activate its user interface. The
application may develop its own user interface instead of using the Source’s. This is discussed
in Chapter 4.

Note: Once the Source is enabled via the DG_CONTROL / DAT_USERINTERFACE/
MSG_ENABLEDS operation, all events that enter the application’s main event loop
must be immediately forwarded to the Source. The explanation for this was given
earlier in this chapter when you were instructed to modify the event loop in
preparation for a TWAIN session.

TWAIN 1.9 Specification 3-49

Chapter 3

State 5to 6 - Recognize that the Data Transfer is Ready

The Source is now working with the user to arrange the transfer of the desired data. Unlike all
the earlier transitions, the Source, not the application, controls the transition from State 5 to
State 6.

No Operations (from the application) are Used:

This transition is not triggered by the application sending an operation. The Source causes the
transition.

Remember while the Source is enabled, the application is forwarding all events in its event loop
to the Source by using the DG_CONTROL /DAT_EVENT / MSG_PROCESSEVENT operation.
The TW_EVENT data structure associated with this operation looks like this:

typedef struct {
TW MEVREF pEvent; /[*W ndows pMsG or MAC pEvent */
TW.U NT16 TWwessage;/*TW nessage fromthe Source to the application*/
} TWEVENT, FAR *pTW EVENT,;

The Source can set the TWMessage field to signal when the Source is ready to transfer data.
Following each DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT operation, the
application must check the TWMessage field. If it contains MSG_XFERREADY, the session is in
State 6 and the Source will wait for the application to request the actual transfer of data.

State 6 to 7 - Start and Perform the Transfer

3-50

The Source indicated it is ready to transfer data. It is waiting for the application to inquire
about the image details, initiate the actual transfer, and, hence, transition the session from
State 6 to 7. If the initiation (DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET) fails, the
session does not transition to State 7 but remains in State 6.

Two Operations are Used:

DG_IMAGE / DAT_IMAGEINFO /7 MSG_GET
pOrigin
Points to the application’s TW_IDENTITY structure.
pDest
Points to the Source’s TW_IDENTITY structure.
pData
Points to a structure of type TW_IMAGEINFO. The definition of TW_IMAGEINFO is:

typedef struct {
TW FI X32 XResol uti on;
TW_FI X32 YResol uti on;
TW.I NT32 | mgeW dt h;
TW.I NT32 | magelLengt h;
TW.I NT16 Sanpl esPer Pi xel ;
TW.I NT16 Bi t sPer Sanpl e[8] ;
TW.I NT16 Bi t sPer Pi xel ;
TW BOOL Pl anar ;
TW.I NT16 Pi xel Type;
TW_UI NT32 Conpr essi on;
} TW.I MAGEI NFO, FAR *pTW.| MAGEI NFG,

TWAIN 1.9 Specification

Application Implementation

The Source will fill in information about the image that is to be transferred. The application
uses this operation to get the information regardless of which transfer mode (Native, Disk
File, or Buffered Memory) will be used to transfer the data.

DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET
pOrigin
Points to the application’s TW_IDENTITY structure.

pDest
Points to the Source’s TW_IDENTITY structure.

pData
Points to a TW_UINT32 variable. This is an exception from the typical pattern.

* On Windows: This is a pointer to a handle variable. For 16 bit Microsoft Windows,
the handle is stored in the low word of the 32-bit integer and the upper word is set to
zero. If running under the WIN32 environment, this is a 32 bit window handle. The
Source will set pHandle to point to a device-independent bitmap (DIB) that it
allocates.

e On Macintosh: This is a pointer to a PicHandle. The Source will set pHandle to
point to a PicHandle that the Source allocates.

In either case, the application is responsible for deallocating the memory block holding the
Native-format image.

The application may want to inquire about the image data that it will be receiving. The
DG_IMAGE / DAT_IMAGEINFO /7 MSG_GET operation allows this. Other operations, such
as DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET, provide additional information. This
information can be used to determine if the application actually wants to initiate the transfer.

To actually transfer the data in the Native mode, the application invokes the DG_IMAGE /
DAT_IMAGENATIVEXFER / MSG_GET operation. The Native mode is the default transfer
mode and will be used unless a different mode was negotiated via capabilities in State 4. For
the Native mode transfer, the application only invokes this operation once per image. The
Source returns the TWRC_XFERDONE value when the transfer is complete. This type of
transfer cannot be aborted by the application once initiated. (Whether it can be aborted from
the Source’s User Interface depends on the Source.) Use of the other transfer modes, Disk File
and Buffered Memory, are discussed in Chapter 4.

TWAIN 1.9 Specification 3-51

Chapter 3

The following code illustrates how to get information about the image that will be transferred
and how to actually perform the transfer. This code segment is continued in the next section
(State 7to 6 to 5).

/1 After receiving MSG_XFERREADY

TW. Ul NT16 TransferNativel mage()

{
TW.I MAGEI NFO tw magel nf o;
TW Ul NT16 rc;
TW Ul NT32 hBi t map;
TW BOOL Pendi ngXfers = TRUE;
whi | e (Pendi ngXfers)
{
rc = (*pDSM_Entry) (&Appl d,
&Sour cel d,
DG_| MAGE,
DAT_I MAGEI NFQ,
MSG_CET,

(TW_MEMREF) & Wl nagel nf o) ;

if (rc == TWRC_SUCCESS)
Exami ne the image information

/1 Transfer the inmage natively
hBi t map = NULL;

rc = (*pDSM_Ent ry) (&Appl d,
Sour cel d,
DG _| MAGE,
DAT_| MAGENATI VEXFER,
MBG_GET,
(TW_MEMREF) &Hbl TMAP) ;

/1l Check the return code

switch(rc)
{
case TWRC_XFERDONE:

/1l Notes: hBitmap points to a valid image Native inmage (DI B or
/1 PICT)
/1 The application is now responsible for deallocating the nmenory.
/1l The source is currently in state 7.
/1 The application must now acknow edge the end of the transfer,
/! determine if other transfers are pending and shut down the data
/'l source.

Pendi ngXfers = DoEndXfer(); //Function found in code
// exampl e in next section
br eak;

3-52 TWAIN 1.9 Specification

}

11
11
11
11
11
11

11
11
11
11
11
11
11

Application Implementation

case TWRC_CANCEL:
The user cancel ed the transfer.
hBitmap is an invalid handl e but nmenory was all ocat ed.
Application is responsible for deallocating the nmenory.
The source is still in state 7.
The application nust check for pending transfers and shut down
the data source.

Pendi ngXfers = DoEndXfer(); //Function found in code
// exampl e in next section
br eak;

case TWRC FAl LURE:
The transfer failed for sone reason.
hBitmap is invalid and no nenory was all ocat ed.
Condition code will contain nore information as to the cause of
the failure.
The state transition failed, the source is in state 6.
The inage data is still pending.
The application should abort the transfer.

DoAbor t Xf er (MSG_RESET); //Function in next section
Pendi ngXfers = FALSE;
br eak;

/] Check the return code
switch (rc)

TWAIN 1.9 Specification

{

case TWRC_XFERDONE:

/1 hBitMap points to a valid Native Inmage (DI B or PICT)
/1 The application is responsible for deallocating the nenory
//The source is in State 7
/1 Acknowl edge the end of the transfer
goto LABEL_DO ENDXFER //found in next section
br eak;

case TWRC_CANCEL:

/1 The user cancel ed the transfer
//hBitMap is invalid
// The source is in State 7
/1 Acknowl edge the end of the transfer
goto LABEL_DO ENDXFER //found in next section
br eak;

case TWRC_FAI LURE:

/1 The transfer failed
//hBitMap is invalid and no nenory was all ocated
/1 Check Condition Code for nore information
//The state transition failed, the source is in State 6
/1 The image data is still pending
// To abort the transfer
goto LABEL_DO ENDXFER //found in code exanple for
//the next section
br eak;

3-53

Chapter 3

3-54

State 7 to 6 to 5 - Conclude the Transfer

While the transfer occurs, the session is in State 7. When the Source indicates via the Return
Code that the transfer is done (TWRC_XFERDONE) or canceled (TWRC_CANCEL), the
application needs to transition the session backwards.

One Operation is Used:

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
pOrigin
Points to the application’s TW_IDENTITY structure.

pDest
Points to the Source’s TW_IDENTITY structure.

pData
Points to a structure of type TW_PENDINGXFERS.
The definition of TW_PENDINGXFERS is:

typedef struct {
TW U NT16 Count;
TW.UI NT32 Reserved;
} TW PENDI NGXFERS, FAR *pTW PENDI NGXFERS;

The DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation is sent by the
application to the Source at the end of every transfer, successful or canceled, to indicate the
application has received all the data it expected.

After this operation returns, the application should examine the pData->Count field to
determine if there are more images waiting to be transferred. The value of pData->Count
indicates the following:

Value Description

pData->Count =0 If zero, the Source will “automatically” transition back to State 5
without the application needing to take any additional action.
Application writers please make special note of this instance of
an implied source transition.
The application should return to its main event loop and await
notification from the Source (either MSG_XFERREADY or
MSG_CLOSEDSREQ).

pData->Count = -1 The Source has more transfers available and is waiting in State 6.
or If the value is -1, that means the Source has another image
pData->Count >0 available but it is unsure of how many more will be available. This

might occur if the Source was controlling a device equipped with a
document feeder and some unknown number of documents were
stacked in that feeder.

If the number of images is known, the Count will be a value
greater than 0.

Either way, the Source will remain in State 6 ready for the
application to initiate another transfer. The Source will NOT send
another MSG_XFERREADY to trigger this. The application should
proceed as if it just received a MSG_XFERREADY.

TWAIN 1.9 Specification

Application Implementation

If more images were pending and your application does not wish to transfer all of them, you
can discard one or all pending images by doing the following:

e Todiscard just the next pending image, use the DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER operation. Then, check the Count field again
to determine if there are additional images pending.

e Todiscard all pending images, use the DG_CONTROL / DAT_PENDINGXFERS /
MSG_RESET operation. Following successful execution of this operation, the session will
be in State 5.

The following code is a continuation of the code example started in the State 6 to 7 section. It
illustrates how to conclude the transfer.

voi d DoEndXfer ()

{
TW _PENDI NGXFERS t wPendi ngXf er s;

/1 If the return code from DG_| MAGE/ DAT_I| MAGENATI VEXFER/ MSG_CGET was
/1 TWRC_CANCEL or TWRC_DONE

/1 Acknow edge the end of the transfer
rc = (*pDSM_Ent ry) (&Appl d,
Sour cel d,
DG_CONTROL,
DAT_PENDI NGXFERS,
MSG_ENDXFER,
(TW_MEMREF) &t wPendi ngXf ers) ;

if (rc == TWRC_SUCCESS)

{
/1 Check for additional pending xfers

i f (twPendingXfers. Count == 0)

{
/1 Source is nowin state 5. NOTE THE | MPLI ED STATE
/1 TRANSI TION! Di sabl e and cl ose the source and
/1l return to TransferNativelnmage with a FALSE notifying
/1l it to not attenpt further image transfers.
Di sabl eAndd oseDS() ;
return(FALSE);
}
el se
{

/1 Source is in state 6 ready to transfer another inmage
if want to transfer this imge

{
/1 returns to the caller, TransferNativel nage
/1 and allows the next inmage to transfer
return TRUE;

}

TWAIN 1.9 Specification 3-55

Chapter 3

else if want to abort and skip over this transfer

{
/1 The current image will be skipped, and the
/1 next, if exists will be acquired by returning
/1 to TransferNativel nage
i f (DoAbort Xfer(MSG_ENDXFER) > 0)
return(TRUE);
el se
return(FALSE) ;
}
}
}
}
}
TW_UI NT16 DoAbort Xfer (TW. Ul NT16 Abort Type)
{
rc = (*pDSM_Entry) (&Appl d,
Sour cel d,
DG_CONTRQOL,
DAT_PENDI NGXFERS,
M5G_ENDXFER,
(TW_MEMREF) & wPendi ngXf ers) ;
if (rc == TWRC_SUCCESS)
{
/1 If the next image is to be skipped, but subsequent inmages
/1 are still to be acquired, the PendingXfers will receive
/1 the MSG_ENDXFER, ot herw se, PendingXfers will receive
/'l MSG_RESET.
rc = (*pDSM_Ent ry) (&Appl d,
Sour cel d,
DG_CONTROL,
DAT_PENDI NGXFERS,
Abort Type,
(TW_MEMREF) & wPendi ngXf ers) ;
}
}

//To abort all pending transfers:
LABEL_ABORT_ALL:
{
rc = (*pDSM_Entry) (&Appl D,
&Sour cel D,
DG_CONTROL,
DAT_PENDI NGXFERS,
MSG_RESET,
(TW_MEMREF) & wPendi ngXf ers) ;
if (rc == TWRC_SUCCESS)
//Source is nowin state 5

3-56 TWAIN 1.9 Specification

Application Implementation

State 5to 1 - Disconnect the TWAIN Session

Once the application has acquired all desired data from the Source, the application can
disconnect the TWAIN session. To do this, the application transitions the session backwards.

In the last section, the Source transitioned to State 5 when there were no more images to
transfer (TW_PENDINGXFERS.Count = 0) or the application called the DG_CONTROL /
DAT_PENDINGXFERS / MSG_RESET operation to purge all remaining transfers. To back out
the remainder of the session:

Three Operations (plus some platform-dependent code) are Used:
To move from State 5 to State 4

DG_CONTROL / DAT_USERINTERFACE /7 MSG_DISABLEDS
pOrigin
Points to the application’s TW_IDENTITY structure.

pDest
Points to the Source’s TW_IDENTITY structure.

pData
Points to a structure of type TW_USERINTERFACE.
The definition of TW_USERINTERFACE is:

typedef struct {
TW BOOL Showu ;
TW BOOL Modal Ul ;
TW HANDLE hParent;
} TW.USERI NTERFACE, FAR *pTW USERI NTERFACE;

Its contents are not used.

Note the following:

« If the Source’s User Interface was displayed: This operation causes the Source’s user
interface, if displayed during the transition from State 4 to 5, to be lowered. This
operation is sent by the application in response to a MSG_CLOSEDSREQ from the
Source. This request from the Source appears in the TWMessage field of the TW_EVENT
structure. It is sent back from the DG_CONTROL / DAT_EVENT /
MSG_PROCESSEVENT operation used by the application to send events to the
application.

» If the application did not have the Source’s User Interface displayed: The application
invokes this command when all transfers have been completed. In addition, the
application could invoke this operation to transition back to State 4 if it wanted to modify
one or more of the capability settings before acquiring more data.

TWAIN 1.9 Specification 3-57

Chapter 3

3-58

To move from State 4 to State 3

DG_CONTROL / DAT_IDENTITY /7 MSG_CLOSEDS
pOrigin
Points to the application’s TW_IDENTITY structure.

pDest
Should reference a NULL value (indicates destination is Source Manager)

pData

Points to a structure of type TW_IDENTITY

This is the same TW_IDENTITY structure that you have used throughout the session to
direct operation triplets to this Source.

When this operation is completed, the Source is closed. (In a more complicated scenario, if the
application had more than one Source open, it must close them all before closing the Source
Manager. Once all Sources are closed and the application does not plan to initiate any other
TWAIN session with another Source, the Source Manager should be closed by the application.)

To move from State 3 to State 2

DG_CONTROL / DAT_PARENT /7 MSG_CLOSEDSM
pOrigin
Points to the application’s TW_IDENTITY structure.

pDest
Should reference a NULL value (indicates destination is Source Manager)

pData

Typically, you would expect to see this point to a structure of type TW_PARENT but this is
not the case. This is an exception to the usual situation where the DAT field of the triplet
identifies the data structure for pData.

On Windows: pData points to the window handle (hwnd) that acted as the Source’s
“parent”. The variable is of type TW_INT32. For 16 bit Microsoft Windows, the handle is
stored in the low word of the 32 bit integer and the upper word is set to zero. If running
under the WIN32 environment, this is a 32 bit window handle.

On Macintosh: pData should be a 32-bit NULL value.

To Move from State 2 to State 1

Once the Source Manager has been closed, the application must unload the DLL (on Windows)
or code resource (on Macintosh) from memory before continuing.

On Windows:

Use FreeLibrary(hDSMLib); where hDSMLIib is the handle to the Source Manager DLL
returned from the call to LoadLibrary() seen earlier (in the State 1 to 2 section).

On Macintosh:

No action is necessary. The shared library will be automatically unloaded when your
application terminates.

TWAIN 1.9 Specification

TWAIN Session Review

Application Implementation

Applications have flexibility regarding which state they leave their TWAIN sessions in between
TWAIN commands (such as Select Source and Acquire).

For example:

» An application might load the Source Manager on start-up and unload it on exit. Or, it
might load the Source Manager only when it is needed (as indicated by Select Source and

Acquire).

* An application might open a Source and leave it in State 4 between acquires.

The following is the simplest view of application’s TWAIN flow. All TWAIN actions are
initiated by a TWAIN command, either user-initiated (Select Source and Acquire) or
notification from the Source (MSG_XFERREADY and MSG_CLOSEDSREQ).

Application Receives

Select Source...

Acquire...

MSG_XFERREADY

MSG_CLOSEDSREQ

TWAIN 1.9 Specification

State

Application Action
Load Source Manager
DG_CONTROL / DAT_PARENT / MSG_OPENDSM
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT
DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM
Unload Source Manager
Load Source Manager
DG_CONTROL / DAT_PARENT / MSG_OPENDSM
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS
Capability Negotiation
DG_CONTROL / DAT_USERINTERFACE /7 MSG_ENABLEDS
For each pending transfer:
DG_IMAGE / DAT_IMAGEINFO / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT
DG_IMAGE / DAT_IMAGExxxxXFER / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

Automatic transition to State 5 if TW_PENDINGXFERS.Count
equals 0.

DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS
DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS
DG_CONTROL / DAT_PARENT /7 MSG_CLOSEDSM

Unload the Source Manager

3-59

Chapter 3

Error Handling

Your application must be robust enough to recognize and handle error conditions that may
occur during a TWAIN session. Every TWAIN operation triplet has a defined set of Return
Codes and Conditions Codes that it may generate. These codes are listed on the reference
pages for each triplet located in Chapter 7. Be sure to check the Return Code following every
call to the DSM_Entry function. If it is TWRC_FAILURE, make sure your code checks the
Condition Code and handles the error condition appropriately.

The following code segment illustrates the basic operations for doing this:
TW STATUS t wSt at us;

if (rc == TWRC_FAI LURE)
/'l check Condition Code
rc = (*pDSM Entry) (&Appl D,
&Sour cel D,
DG_CONTROL,
DAT_STATUS,
MSG_CET,
(TW_MEVREF) &t wSt at us) ;
switch (twsStatus. ConditionCode)
// handl e each possible Condition Code for the operation

Common Types of Error Conditions

3-60

Sequence Errors

The TWAIN protocol allows the invoking of specific operations only while the TWAIN session
is in a particular state or states. The valid states for each operation are listed on the operation’s
reference pages in Chapter 7. If an operation is called from an inappropriate state, the call will
return an error, TWRC_FAILURE, and set the Condition Code to TWCC_SEQERROR.
Although this error should not occur if both the application and Source are behaving correctly,
it is possible for the session to get out of sync.

If this error occurs, correct it by assuming the Source believes it is in State 7. The application
should invoke the correct operations to back up from State 7 to State 6 and so on down the
states until an operation succeeds. Then, the application can continue or terminate the session.

The following pseudo code illustrates this:

i f (TWCC_SEQERROR)
/1 Assunme State 7, start backing out from State 7 until
/1 the Condition Code != TWCC_ SEQERROR
State 7 to 6 DG_CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFER
State 6 to 5 DG _CONTROL / DAT_PENDI NGXFERS / MSG_RESET
State 5to 4 DG_CONTROL / DAT_USERI NTERFACE / MSG_DI SABLEDS
State 4 to 3 DG _CONTROL / DAT_IDENTITY / MsG_CLOSEDS

TWAIN 1.9 Specification

Application Implementation

Low Memory Errors

Another common type of error condition occurs when insufficient memory is available to
perform a requested operation. The most likely times for this to occur are:

* When a Source is being opened
* When a Source is being enabled
» During a Native image transfer

Your application must check the Return Code and Condition Code (TWRC_FAILURE /
TWCC_LOWMEMORY) to recognize this. Your application may be able to free up sufficient
memory to continue or it must quit.

State Transition Operation Triplet Errors

Many operations normally cause state transitions. If one of these operations fails, for example,
returns TWRC_FAILURE, do not make the state transition. The application must check the
Return Code following every operation and update the current state only if the operation
succeeds.

An implied state transition during DG_CONTRCOL/ DAT_PENDI NGXFERS/ MSG_ENDXFER
deserves special note here. If the Count field of the TW PENDI NGXFERS structure is zero then
the source will automatically transition back to State 5. Application writers should be aware of
this condition and react accordingly.

Error Handling and State Transitions

It is possible that during execution of any triplet that the data source will fail unexpectedly. It
is very important that applications pay attention to the TWAIN State of the data source at the
time of failure. A hanging or deadlock condition will occur if the application fails to recover
from error conditions with the proper state transitions. Most error handling is fairly obvious,
however the following items have been mishandled in the past.

Failing Transition to State 5

A data source may fail a call to DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS
unexpectedly. It is important to note that if an application requests the User Interface be
suppressed, and the data source returns a code of TWRC_CHECKSTATUS, this means only
that User Interface suppression was not possible. The transition to State 5 still occurred. If the
application does not like this condition, then it may call MSG_DISABLEDS to close the data
source without further user interaction. A return code of TWRC_FAILURE indicates that the
transition to State 5 has not occurred.

Failure During State 6 or 7

It is important to be aware that when an error occurs during image transfer, a state transition to
State 5 is not implicit. A call to DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET or
MSG_ENDXFER is required for a state transition back to State 5. If an applications calls
MSG_DISABLEDS immediately after such a failure without first making the required calls to
DAT_PENDINGXFERS, the resulting behavior of the data source will not be predictable. The
data source should fail any call to MSG_DISABLEDS outside of State 5.

TWAIN 1.9 Specification 3-61

Chapter 3

Requirements for an Application to be TWAIN-Compliant

To be compliant with TWAIN 1.9 and higher, all Sources must support both Ul and
programmatic control. Ul control is the traditional method of control used when an
Application enables a Source with DG_CONTROL / DAT_USERINTERFACE /
MSG_ENABLEDS (ShowUI == TRUE). Programmatic control implies that an Application will
not use a Source’s Ul, but will control it directly (ShowUI == FALSE). Application writers have
long requested the ability to programmatically control Sources, so that they can present their
own Ul’s, offering the user a common look and feel no matter what Source is currently in use.
The following lists of triplets and capabilities map out the minimum required set of features
that a Source must offer programmatically to be TWAIN compliant. Sources, though, are
strongly encouraged to go beyond this list and implement as many of their capabilities as
possible for programmatic access.

This list is organized by versions of TWAIN to help Source writers decide which version they
wish to support. Itis also intended for Applications writers, who can use this information to
identify the real level of TWAIN support provided by a Source if its reported version is not
matched by the items in this list.

TWAIN 1.9 Sources must support all TWAIN 1.8 required features and the following:
Operations

DG_CONTROL / DAT_USERINTERFACE /7 MSG_ENABLEDSUIONLY - this operation is
only required for mid- and high-volume scanners. It is strongly recommended for other
devices since it allows a way for an application to create predefined session setups for devices
that also include settings for custom features. Note that applications that support this
operation must also support DAT_CUSTOMDSDATA.

DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORTED

If DG_CONTROL / DAT_EXTIMAGEINFO is supported, then the following TWEI_ values
must be reported:

TWEI_DOCUMENTNUMBER
TWEI_PAGENUMBER
TWEI_CAMERA
TWEI_FRAMENUMBER
TWEI_FRAME
TWEI_PIXELFLAVOR

If DG_AUDIO is supported, then ACAP_XFERMECH must be available.
Capabilities

CAP_UICONTROLLABLE - Sources must provide the ability to run without their internal GUI,
which means that this capability must report TRUE.

TWAIN 1.8 Sources must support all TWAIN 1.7 required features and the following:

No new requirements were added in this version.

3-62 TWAIN 1.9 Specification

Application Implementation

TWAIN 1.7 Sources must support all TWAIN 1.6 required features and the following:
Operations

DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORTED - This triplet was
introduced in 1.7, and should have been made mandatory, but was not. Sources that support
1.7 are strongly encouraged to support this operation, but it is not a mandatory requirement.

TWAIN 1.6 Sources must support all TWAIN 1.5 required features and the following:
Capabilities

CAP_DEVICEONLINE - This capability is required to physically prove that the device is
powered up and available.

TWAIN 1.5 Sources must support the following:

Operations

DG_CONTROL / DAT_CAPABILITY /7 MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT
DG_CONTROL / DAT_CAPABILITY /7 MSG_GETDEFAULT
DG_CONTROL / DAT_CAPABILITY / MSG_RESET
DG_CONTROL 7 DAT_CAPABILITY / MSG_SET

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT

DG_CONTROL / DAT_IDENTITY / MSG_GET
DG_CONTROL / DAT_IDENTITY /7 MSG_OPENDS
DG_CONTROL 7/ DAT_IDENTITY / MSG_CLOSEDS

DG_CONTROL / DAT_PENDINGXFERS /7 MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS /7 MSG_GET
DG_CONTROL / DAT_PENDINGXFERS /7 MSG_RESET

DG_CONTROL 7 DAT_SETUPMEMXFER / MSG_GET
DG_CONTROL / DAT_STATUS / MSG_GET

DG_CONTROL / DAT_USERINTERFACE /7 MSG_DISABLEDS
DG_CONTROL / DAT_USERINTERFACE 7 MSG_ENABLEDS

DG_CONTROL / DAT_XFERGROUP / MSG_GET
DG_IMAGE / DAT_IMAGEINFO /7 MSG_GET

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE /7 DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET
DG_IMAGE /7 DAT_IMAGELAYOUT / MSG_SET

DG_IMAGE /7 DAT_IMAGEMEMXFER / MSG_GET
DG_IMAGE 7 DAT_IMAGENATIVEXFER / MSG_GET

TWAIN 1.9 Specification 3-63

Chapter 3

3-64

Capabilities

CAP_SUPPORTEDCAPS MSG_GET required

CAP_XFERCOUNT All MSG_* operations required
ICAP_COMPRESSION All MSG_GET* operations required
ICAP_BITDEPTH All MSG_* operations required
ICAP_BITORDER All MSG_* operations required

ICAP_PLANARCHUNKY All MSG_GET* operations required
ICAP_PHYSICALHEIGHT All MSG_GET* operations required
ICAP_PHYSICALWIDTH All MSG_GET* operations required

ICAP_PIXELFLAVOR All MSG_GET* operations required
ICAP_PIXELTYPE All MSG_* operations required
ICAP_UNITS All MSG_* operations required
ICAP_XFERMECH All MSG_* operations required
ICAP_XRESOLUTION All MSG_* operations required
ICAP_YRESOLUTION All MSG_* operations required

All Sources must implement the advertised features supported by their devices. They must
make these features available to applications via the TWAIN protocol. For example, a Source
that’s connected to a device that has an ADF must support DG_CONTROL /
DAT_CAPABILITY /7 MSG_GET, MSG_GETCURRENT, MSG_GETDEFAULT on:
CAP_FEEDERENABLED
CAP_FEEDERLOADED

and DG_CONTROL / DAT_CAPABILITY /7 MSG_GET,
MSG_GETCURRENT,MSG_GETDEFAULT, MSG_RESET and MSG_SET on:

CAP_AUTOFEED

If the ADF also supports ejecting and rewinding of pages, then the Source should also support
DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT,
MSG_GETDEFAULT, MSG_RESET and MSG_SET on:

CAP_CLEARPAGE
CAP_REWINDPAGE

TWAIN 1.9 Specification

Advanced
Application Implementation

Using TWAIN to acquire a raster image from a device is relatively simple to implement as
demonstrated in Chapter 3. However, TWAIN also allows application developers to go beyond
the simple acquisition of a single image in Native (DIB or PICT) format. These more advanced
topics are discussed in this chapter. They include:

Chapter Contents

Capabilities 65
Options for Transferring Data 79
The Image Data and Its Layout 87
Transfer of Multiple Images 90
Transfer of Compressed Data 96
Alternative User Interfaces 100
Grayscale and Color Information for an Image 103
Contrast, Brightness, and Shadow Values 105

Capabilities

Capabilities, and the power of an application to negotiate capabilities with the Source, give
control to TWAIN-compliant applications. In Chapter 3, you saw the negotiation of one
capability, CAP_XFERCOUNT. This capability was negotiated during State 4 as is always the
case unless delayed negotiation is agreed to by both the application and Source. In fact, there is
much more to know about capabilities.

TWAIN 1.9 Specification 4-65

Chapter 4

Capability Values

4-66

Several values are used to define each capability. As seen in Chapter 9, TWAIN defines a
Default Value and a set of Allowed Values for each of the capabilities. The application is not
able to modify the Default Value. However, it is able to limit the values offered to a user to a
subset of the Allowed Values and to select the capability’s Current Value.

Default Value

When a Source is opened, the Current Values for each of its capabilities are set to the TWAIN
Default Values listed in Chapter 9. If no default is defined by TWAIN, the Source will select a
value for its default. An application can return a capability to its TWAIN-defined default by
issuinga DG_CONTROL / DAT_CAPABILITY / MSG_RESET operation.

Although TWAIN defines defaults for many of the capabilities, a Source may have a different
value that it would prefer to use as its default because it would be more efficient. For example,
the Source may normally use a 0 bit in a black and white image to indicate white. However, the
default for ICAP_PIXELFLAVOR is TWPF_CHOCOLATE which states that a 0 represents
black. Although the TWAIN default is TWPF_CHOCOLATE, the Source’s preferred default
would be TWPF_VANILLA. When the application issues a DG_CONTROL /
DAT_CAPABILITY / MSG_GETDEFAULT operation, the Source returns information about its
preferred defaults. The Source and application may be able to negotiate a more efficient
transfer based on this information.

Note that this does not imply that the TWAIN defaults should be completely disregarded.
When trying to resolve the conflict between the “preferred” value of a particular data source
capability and the TWAIN-specified default, it should be considered that the problem is similar
to storing and restoring image attributes from session to session. It is reasonable to assume that
a data source will want to store the current values for some capabilities to be restored as the
current values in a future session. It is then also reasonable to expect that these restored values
will be reflected as the current settings for the appropriate capabilities. While storing settings is
only really useful for image attributes (the data source would not store the value of
ICAP_PIXELFLAVOR, but it might store the current ICAP_RESOLUTION), it should be stated
that preferred values of a data source are to be treated in the same manner.

At the time of loading the data source, all current values for the appropriate capabilities would
be set to values that have either been restored from a previous session, or those that are
“preferred” by the data source. This current value will remain until it has been explicitly
changed by the calling application, or that application issues a MSG_RESET.

These are best illustrated using examples, since not all capabilities are suitable for preferred
values, and most are not suitable to be stored and restored across multiple scanning sessions.

Example 1:
Scan Parameters are stored in one session and restored in another

1. User configures the data source User Interface with the following parameters: 4x6 inch
image in 24-bit at 200 DPI X and Y resolution

User selects “Scan” and data source signals application to transfer.
Application acquires the image successfully.
Application disables the data source.

o > D

Application inquires during State 4 the current values of Frame, Pixel Type, Bit Depth,
and Resolution.

TWAIN 1.9 Specification

Advanced Application Implementation

6. Data source reports to each inquiry the current values that were set by the user: 4x6
inch image in 24-bit at 200 DPI X and Y resolution.

7. Application closes the data source.

8. During close procedure, the data source stores the current Frame, Pixel Type, Bit Depth
and Resolution.

9. Application opens data source.

10. During open procedure, the data source restores current Frame, Pixel Type, Bit Depth
and Resolution.

11. Application inquires during State 4 the current values of Frame, Pixel Type, Bit Depth,
and Resolution.

12. Data source reports to each inquiry the current values that were restored from previous
session; 4x6 inch image in 24-bit at 200 DPI X and Y resolution in one session.

Example 2:
Data Source represents the preferred Pixel Flavor without compromising TWAIN Defined
Default value

1. Application opens data source for the first time
2. Application inquires during State 4 about the Default Pixel Flavor

3. Data source reports that the default pixel flavor is TWPF_CHOCOLATE (see
Chapter 9).

4. Application inquires during State 4 about the current pixel flavor.

5. Data source reports that the current pixel flavor is TWPF_VANILLA (because this
device returns data in that gender natively).

6. Application issues reset to current pixel flavor.

7. During reset operation, data source changes current value to TWPF_CHOCOLATE and
prepares to invert data during transfer to accommodate the calling application request.

There is a condition where this logic falls apart. If the data source wants to return a
TW_ENUMERATION to a MSG_GET request for a constrained capability, there is a chance that
the Default value imposed by the TWAIN Specification (Chapter 9) will not exist within the
constrained set of values. In this case, the application should consider the default value to be
undefined. Common sense should dictate that the data source provide some default that is
reasonable within the currently available set of values for safety (a bad index in a
TW_ENUMERATION could be a disaster). When the default value is actually used (during
MSG_RESET) the constraints shall be lifted, and the original default value will once again exist
and be defined. (See next section on Constrained Capabilities about MSG_RESET) This is only
a problem with a TW_ENUMERATION container, since it contains an index to the default.

Current Value

The application may request to set the Current Value of a capability. If the Source’s user
interface is displayed, the Current Value should be reflected (perhaps by highlighting). If the
application sets the Current Value, it will be used for the acquire and transfer unless the user or
an automatic Source process changes it. The application can determine if changes were made
by checking the Current Value during State 6.

TWAIN 1.9 Specification 4-67

Chapter 4

4-68

To determine just the capability’s Current Value, use DG_CONTROL / DAT_CAPABILITY /
MSG_GETCURRENT. To determine both the Current Value and the Available Values, use the
DG_CONTROL / DAT_CAPABILITY / MSG_GET operation. For example, you could do a
MSG_GET on ICAP_PIXELTYPE and the Source might return a TW_ENUMERATION
container containing TWPT_BW, TWPT_GRAY, and TWPT_RGB as Available Values.

To set the Current Value:
Use DG_CONTROL / DAT_CAPABILITY / MSG_SET and one of the following containers:
« TWON_ONEVALUE: Place the desired value in TW_ONEVALUE.Item.
e TWON_ARRAY: Place only the desired items in TW_ARRAY.ItemList.
These must be a subset of the items returned by the Source from a MSG_GET operation.

It is also possible to set Current Values using the TW_ENUMERATION and TW_RANGE
containers. See the Available Values information for details.

Available Values

To limit the settings the Source can use during the acquire and transfer process, the application
may be able to restrict the Available Values. The Source should not use a value outside these
values. These restrictions should be reflected in the Source’s user interface so unavailable
values are not offered to the user.

For example, if the MSG_GET operation on ICAP_PIXELTYPE indicates the Source supports
TWPT_BW, TWPT_GRAY, and TWPT_RGB images and the application only wants black and
white images, it can request to limit the Available Values to black and white.

To limit the Available Values:

Use DG_CONTROL / DAT_CAPABILITY / MSG_SET and one of the following containers:

« TWON_ENUMERATION: Place only the desired values in the
TW_ENUMERATION.ItemList field. The Current Value can also be set at this time
by setting the Currentindex to point to the desired value in the ItemList.

« TWON_RANGE: Place only the desired values in the TW_RANGE fields. The
current value can also be set by setting the CurrentValue field.

Note that TW_ONEVALUE and TW_ARRAY containers cannot be used to limit the Available
Values.

TWAIN 1.9 Specification

Advanced Application Implementation

Capability Negotiation
The negotiation process consists of three basic parts:
1. The application determines which capabilities a Source supports
2. The application sets the supported capabilities as desired

3. The application verifies that the settings were accepted by the Source

Negotiation (Part 1)
Application Determines Which Capabilities the Source Supports

Step 1

Application allocates a TW_CAPABILITY structure and fills its fields as follows:
» Cap =the CAP_ or ICAP_ name for the capability it is interested in
» ConType = TWON_DONTCAREL16
* hContainer = NULL

Step 2

Application uses the TW_CAPABILITY structure ina DG_CONTROL /
DAT_CAPABILITY / MSG_GET operation.

Step 3
The Source examines the Cap field to see if it supports the capability. If it does, it creates
information for the application. In either case, it sets its Return Code appropriately.
Step 4
Application examines the Return Code, and maybe the Condition Code, from the
operation.

If TWRC_SUCCESS then the Source does support the capability and

» The ConType field was filled by the Source with a container identifier

(TWON_ARRAY, TWON_ENUMERATION, TWON_ONEVALUE, or
TWON_RANGE)

» The Source allocated a container structure of ConType and referenced the
hContainer field to this structure. It then filled the container with values
describing the capability’s Current Value, Default Value, and Available Values.

Based on the type of container and its contents (whose type is indicated by it ItemType
field), the application can read the values. The application must deallocate the
container.

If TWRC_FAILURE and TWCC_CAPUNSUPPORTED
» Source does not support this capability

The application can repeat this process for every capability it wants to learn about. If the
application really only wants to get the Current Value for a capability, it can use the
MSG_GETCURRENT operation instead. In that case, the ConType will just be
TWON_ONEVALUE or TWON_ARRAY but not TWON_RANGE or
TWON_ENUMERATION.

TWAIN 1.9 Specification 4-69

Chapter 4

4-70

Note: The capability, CAP_SUPPORTEDCAPS, returns a list of capabilities that a Source

supports. But it doesn’t indicate whether the supported capabilities can be negotiated,
If the Source does not support the CAP_SUPPORTEDCAPS capabilities, it returns
TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Negotiation (Part 2)
The Application Sets the Supported Capability as Desired

Step 1
Application allocates a TW_CAPABILITY structure and fills its fields as follows:
e Cap =the CAP_, ICAP_, or ACAP_name for the capability it is interested in

+ ConType = TWON_ARRAY, TWON_ENUMERATION, TWON_ONEVALUE or
TWON_RANGE (Refer to Chapter 9 to see each capability and what type(s) of
container may be used to set a particular capability.)

» hContainer = The application must allocate a structure of type ConType and
reference this field to it. (See the next step.)

Step 2

Application allocates a structure of type ConType and fills it. Based on values received
from the Source during the MSG_GET, it can specify the desired Current Value and
Available Values that it wants the Source to use. The application should not attempt to set
the Source’s Default Value, just put an appropriate constant in that field (ex.
TWON_DONTCARE32).

Note: The application is responsible for deallocating the container structure when the
operation is finished.

Step 3
Send the request to the Source using DG_CONTROL / DAT_CAPABILITY / MSG_SET.

Negotiation (Part 3)
The Application MUST Verify the Result of Their Request

Step 1

Even if a Source supports a particular capability, it is not required to support the setting of
that capability. The application must examine the Return Code from the MSG_SET request
to see what took place.

If TWRC_SUCCESS then the Source set the capability as requested.
If TWRC_CHECKSTATUS then

» The Source could not use one or more of your exact values. For instance, you
asked for a value of 310 but it could only accept 100, 200, 300, or 400. Your
request was within its legitimate range so it rounded it to its closest valid setting.

TWAIN 1.9 Specification

Advanced Application Implementation

Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation to determine the
current and available settings at this time. This is the only way to determine if the Source’s
choice was acceptable to your application.

If TWRC_FAILURE / TWCC_BADVALUE then
 Either the Source is not granting your request to set or restrict the value.

* Or, your requested values were not within its range of legitimate values. It may
have attempted to set the value to its closest available value.

Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation to determine the
current and available settings at this time. This is the only way to determine if your
application can continue without your requested values.

You can repeat the setting and verifying processes for every capability of interest to your
application. Remember, your application must deallocate all container structures.

The Most Common Capabilities

TWAIN defines over 150 capabilities. Although the number may seem overwhelming, it is
easier to handle if you recognize that some of the capabilities are more commonly used. Here
are some of these capabilities:

Basic Capabilities

Units
The ICAP_UNITS capability determines the unit of measure which will be used by the
Source. The default is inches but centimeters, pixels, etc. are allowed. This capability’s
value is used when measuring several other values in capabilities and data structures
including:

ICAP_PHYSICALHEIGHT,

ICAP_PHYSICALWIDTH,

ICAP_XNATIVERESOLUTION,

ICAP_YNATIVERESOLUTION,

ICAP_XRESOLUTION,

ICAP_YRESOLUTION,

TW_FRAME,

TW_IMAGEINFO.XResolution,

TW_IMAGEINFO.YResolution

Sense of the Pixel

The ICAP_PIXELFLAVOR specifies how a bit of data should be interpreted when
transferred from Source to application. The default is TWPF_CHOCOLATE which means a
0 indicates black (or the darkest color). The alternative, TWPF_VANILLA, meansa0
indicates white (or the lightest color).

Resolution

The image resolution is reported in the TW_IMAGEINFO structure. To inquire or set the
Source’s resolution, use ICAP_XRESOLUTION and ICAP_YRESOLUTION.

Refer also to ICAP_XNATIVERESOLUTION and ICAP_YNATIVERESOLUTION.

TWAIN 1.9 Specification 4-71

Chapter 4

Image Type Capabilities
Types of Pixel

The application should negotiate ICAP_PIXELTYPE and ICAP_BITDEPTH unless it can
handle all pixel types at all bit depths. The allowed pixel types are: TWPT_BW,
TWPT_GRAY, TWPT_RGB, TWPT_PALETTE, TWPT_CMY, TWPT_CMYK, TWPT_YUV,
TWPT_YUVK, and TWPT_CIEXYZ.

Depth of the Pixels (in bits)

A pixel type such as TWPT_BW allows only 1 bit per pixel (either black or white). The
other pixel types may allow a variety of bits per pixel (4-bit or 8-bit gray, 8-bit or 24-bit
color). Be sure to set the ICAP_PIXELTYPE first, then set the ICAP_BITDEPTH.

Parameters for Acquiring the Image

Exposure

Several capabilities can influence this. They include ICAP_BRIGHTNESS,
ICAP_CONTRAST, ICAP_SHADOW, ICAP_HIGHLIGHT, ICAP_GAMMA, and
ICAP_AUTOBRIGHT.

Scaling

To instruct a Source to scale an image before transfer, refer to ICAP_XSCALING and
ICAP_YSCALING.

Rotation

To instruct a Source to rotate the image before transfer, refer to ICAP_ROTATION and
ICAP_ORIENTATION.

Constrained Capabilities and Message Responses

There is some confusion about how the data source should respond to various capability
gueries when the application has imposed constraints upon the supported values. The
following guidelines should help clarify the situation.

MSG_RESET

It is known that this call resets the current value of the requested capability to the default. It
must also be stated that this call will also reset any application imposed constraints upon the
requested capability.

MSG_GETCURRENT, and MSG_GETDEFAULT

It is intuitive to assume that this message should not be supported by capabilities that have no
Current or Default value. However, the specification says otherwise in Chapter 9 (a good
example is ICAP_SUPPORTEDCAPS). In this case, it makes sense to simply respond to these
messages in the same manner as MSG_GET.

It can also be assumed that it is more intuitive for a data source to respond to this capability
with a TW_ONEVALUE container in all cases that a TW_ONEVALUE container is allowed.

4-72 TWAIN 1.9 Specification

Advanced Application Implementation

MSG_GET

If an application has constrained the current capability, then the data source response to this
message should reflect those constraints. Otherwise, this should respond with all the values
that the data source supports. Of course, the number of values that can be placed in the
response are restricted by the allowed containers for the particular current capability outlined
in Chapter 9.

MSG_SET
As indicated in the Chapter 7 description of this capability triplet:

“Current Values are set when the container isa TW_ONEVALUE or TW_ARRAY. Available and
Current Values are set when the container isa TW_ENUMERATION or TW_RANGE.”

To further clarify this operation, it should be stated that when an application imposes a
constraint, the data source must consider the set of supported values and the set of requested
constraints. The resulting set of values shall contain only the values that are shared by those
supported and those requested.

A condition may arise after constraints are imposed, where the default value is no longer
within the set of supported values. When using a TW_ENUMERATION, the reported default
index should be changed by the data source to something that falls within the new constrained
set. This is simply a precaution to ensure it is a valid index. In this case, the Default index in a
TW_ENUMERATION loses meaning and should be ignored by applications, since
MSG_RESET shall cause the constraints to be eliminated.

Capability Containers in Code Form

Capability information is passed between application and Source by using data structures
called containers: TW_ARRAY, TW_ENUMERATION, TW_ONEVALUE, and TW_RANGE.
The actions needed to create (pack) and read (unpack) containers are illustrated here in the
following code segments. Containers are flexible in that they can be defined to contain one of
many types of data. Only one ItemType (TWTY_xxxX) is illustrated per Container
(TWON_xxxx) here. Refer to the toolkit disk for complete packing and unpacking utilities that
you can use with containers.

Reading (unpacking) a Container from a MSG_GET Operation

e e
/| Exanpl e of DG _CONTRCL / DAT_CAPABILITY / MSG GET
e e
TW CAPABI LI TY twCapability;

TW I NT16 rc,;

/1 Setup TW CAPABI LI TY Structure

twCapability. Cap = Cap; [1Fill in capability of interest
twCapabi lity. ConType = TWON_DONTCARELG6;
twCapabi l i ty. hContai ner = NULL;

TWAIN 1.9 Specification 4-73

Chapter 4

4-74

//Send the Triplet
rc = (*pDSM_Ent ry) (&Appl D,
&Sour cel D,
DG_CONTROL,
DAT_CAPABI LI TY,
MSG_CET,

(TW MENVREF) & wCapabi | i ty);

/] Check return code
if (rc == TWRC_SUCCESS)
{
//Switch on Container Type
switch (twCapability. ConType)

{

ENUVERATI ON
case TWON_ENUMERATI ON:
{
pTW ENUVERATI ON pval Enum
TW Ul NT16 val ueU16;
TW_ Ul NT16 i ndex;

pval Enum = (pTW ENUMERATI ON) d obal Lock(twCapabi |l ity. hCont ai ner);
Num t ens = pval Enum >Num t ens;

Current |l ndex = pval Enum >Current | ndex;

Def aul t I ndex = pval Enum >Def aul t | ndex;

for (index = 0; index < pval Enum >Num tens; index++)

{
i f (pval Enum >ltenType == TWI'Y_UI NT16)

{
val ueUl6 = ((TW.UI NT16) (pval Enum >l tenLi st[index*2]));
//Store Item Val ue
}
}
G obal Unl ock(twCapabi lity. hContai ner);
}
br eak;
ONEVALUE
case TWON _ONEVALUE:
{
pTW ONEVALUE pval OneVal ue;
TW BOOL val ueBool ;

pval OneVal ue = (pTW ONEVALUE) G obal Lock(twCapabi lity. hCont ai ner);
i f (pval OneVal ue->ltenlype == TWI'Y_BOCQL)

{
val ueBool = (TW.BOQL) pval OneVal ue->ltem
/] Store |Item Val ue

}
G obal Unl ock(twCapabi lity. hCont ai ner);

}

br eak;

TWAIN 1.9 Specification

Advanced Application Implementation

[]----- RANGE
case TWON_RANGE:
{
pTW RANGE pval Range;
pTW FI X32 PTWFi x32;
fl oat val ueF32;
TW Ul NT16 i ndex;

pval Range = (pTW RANGE) d obal Lock(twCapabi | ity. hCont ai ner);
if ((TW.U NT16) pval Range- >l tenifype == TWI'Y_FI X32)

{
pTWFi x32 = &(pval Range->M nVal ue) ;
val ueF32 = FI X32ToFl oat (* pTWFi x32) ;
//Store Item Val ue
pTWFi x32 = &(pval Range- >MaxVal ue) ;
val ueF32 = FI X32ToFl oat (* pTWFi x32) ;
//Store Item Val ue
pTWFi x32 = &(pval Range- >St epSi ze) ;
val ueF32 = FI X32ToFl oat (* pTWFi x32) ;
//Store Item Val ue
}
G obal Unl ock(twCapability. hContai ner);
}
br eak;
I]----- ARRAY
case TWON_ARRAY:
{
pTW ARRAY pval Array;
TW_ Ul NT16 val ueUl6;
TW_ Ul NT16 i ndex;
pval Array = (pTW ARRAY) d obal Lock(twCapabi lity. hCont ai ner);
for (index = 0; index < pval Array->Num tens; index++)
{
if (pval Array->ltenilfype == TWI'Y_Ul NT16)
{
val ueUl6 = ((TW.UI NT16) (pval Array->ltenli st[index*2]));
//Store Item Val ue
}
}
A obal Unl ock(twCapability. hContai ner);
}
br eak;

} //End Switch Statenent
G obal Free(twCapabi lity. hCont ai ner);

} else {
/] Capability MSG CET Fail ed check Condition Code

}

TWAIN 1.9 Specification 4-75

Chapter 4

/**

* Fi x32ToFl oat

* Convert a FIX32 value into a floating point val ue.
**/
float FIX32ToFl oat (TW_FI X32 fix32)

{

float floater;

floater = (float)fix32. Whole + (float)fix32.Frac / 65536. 0;
return floater;

}
Creating (packing) a Container for a MSG_SET Operation

TW CAPABILITY twCapability;
TW I NT16 rc,;
TW_UI NT32 Nunber O | t ens;

twCapability. Cap = Cap; //lnsert Capability of Interest
twCapabi lity. ConType = Cont ai ner;

/1 Use TWON_ONEVALUE or TWON _ARRAY to set current val ue

/1 Use TWON_ENUMERATI ON or TWON RANGE to limt avail able val ues

switch (twCapability. ConType)

ff----- ENUMERATI ON
case TWON_ENUMERATI ON:

{
pTW ENUVERATI ON pval Enum

// The nunber of Itens in the Itenlist
NumberOfl tens = 2;

/1 Allocate nenory for the container and additional Itenlist
/1 entries
twCapabi lity. hContai ner = d obal Al | oc(GHND,
(si zeof (TW ENUMERATI ON) + si zeof (TW.UI NT16) * (NunberOltens)));
pval Enum = (pTW_ENUMERATI ON) @ obal Lock(t wCapabi | i ty. hCont ai ner);

pval Enum >Num tems = 2 /1 Nunber of Itens in Itenlist
pval Enum >l t enType = TWI'Y_UI NT16;

((TW_UI NT16) (pval Enum >l tenList[0])) = 1;

((TW.UI NT16) (pval Enum >l tenList[1])) 2;

A obal Unl ock(twCapabi lity. hCont ai ner);

}

br eak;

4-76 TWAIN 1.9 Specification

Advanced Application Implementation

fl----- ONEVALUE
case TWON_ONEVALUE:

{
pTW ONEVALUE pval OneVal ue;

twCapabi lity. hContai ner = d obal All oc(GHND, si zeof (TW ONEVALUE)) ;
pval OneVal ue = (pTW ONEVALUE) G obal Lock(twCapabi lity. hCont ai ner);

(TW_UI NT16) pval OneVal ue- >l t enifype = TWI'Y_UI NT16;
(TW.Ul NT16) pval OneVal ue->ltem = 1;

G obal Unl ock(twCapabi lity. hCont ai ner);

}
br eak;
I]----- RANGE

case TWON_RANGE:

{

pTW RANGE pval Range;

TW FI X32 TWFi x32;

f1 oat val ueF32;
twCapabi lity. hContai ner = d obal Al |l oc(GHND, si zeof (TW RANGE)) ;
pval Range = (pTW RANGE) d obal Lock(twCapabi lity. hCont ai ner);
(TW_UI NT16) pval Range- >l t enType = TWIY_FI X32;
val ueF32 = 100;
TWFi x32 = Fl oat ToFI X32 (val ueF32);
pval Range->M nVal ue = *((pTW.I NT32) &TWFi x32);
val ueF32 = 200;
TWFi x32 = Fl oat ToFI X32 (val ueF32);
pval Range- >MaxVal ue = *((pTW.I NT32) &TWFi x32);
G obal Unl ock(twCapabi lity. hCont ai ner);

}

br eak;

I]----- ARRAY

case TWON_ARRAY:

{

pTW ARRAY pval Array;

/1 The nunber of Itens in the Itenlist
Number Ol tens = 2;

/1 Allocate nenory for the container and additional ItenlList entries

twCapabi lity. hContai ner = d obal Al | oc(GHND,
(si zeof (TWARRAY) + sizeof (TW.UI NT16) * (NunberOfltens)));

pval Array = (pTW_ ARRAY) d obal Lock(twCapabi lity. hCont ai ner);

(TW_UI NT16) pval Array- >l tenifype = TWY_Ul NT16;
(TW.UI NT16) pval Array->Num tens = 2;

((TW.UI NT16) (pval Array->ltenList[0])) =1
((TW.UI NT16) (pval Array->ltenList[1])) = 2;

A obal Unl ock(twCapabi lity. hCont ai ner);
}

br eak;

TWAIN 1.9 Specification 4-77

Chapter 4

fl----- MSG_SET
rc = (*pDSM_Ent ry) (&Appl D,
&Sour cel D,
DG_CONTROL,
DAT_CAPABI LI TY,
MSG_SET,

(TW MEMREF) &t wCapabi | i ty)

A obal Free(twCapabi lity. hCont ai ner);
switch (rc)

{
case TWRC_SUCCESS:
/] Capability's Current or Avail able value was set as specified
case TWRC_CHECKSTATUS:
/1 The Source matched the specified value(s) as closely as possible
//Do a MSG GET to deternine the settings nade
case TWRC FAl LURE:
/] Check the Condition Code for nore information
}

/**

* Fl oat ToFi x32
* Convert a floating point value into a FI X32.

**/

TW. FI X32 Fl oat ToFi x32 (fl oat floater)

{
TW FI X32 Fi x32_val ue;
TWINT32 value = (TWINT32) (floater * 65536.0 + 0.5);
Fi x32_val ue. Whol e = val ue >> 16;
Fi x32_val ue. Frac = val ue & 0x0000ffffL;
return (Fi x32_val ue);
}

Delayed Negotiation - Negotiating Capabilities After State 4

Applications may inquire about a Source’s capability values at any time during the session with
the Source. However, as a rule, applications can only request to set a capability during State 4.
The rationale behind this restriction is tied to the display of the Source’s user interface when the
Source is enabled. Many Sources will modify the contents of their user interface in response to
some of the application’s requested settings. These user interface modifications prevent the
user from selecting choices that do not meet the application’s requested values. The Source’s
user interface is never displayed in State 4 so changes can be made without the user’s
awareness. However, the interface may be displayed in States 5 through 7.

Some capabilities have no impact on the Source’s user interface and the application may really
want to set them later than State 4. To allow delayed negotiation, the application must request,
during State 4, that a particular capability be able to be set later (during States 5 or 6). The
Source may agree to this request or deny it. The request is negotiated by the application with
the Source by using the DG_CONTROL / DAT_CAPABILITY operations on the
CAP_EXTENDEDCAPS capability.

4-78 TWAIN 1.9 Specification

Advanced Application Implementation

On the CAP_EXTENDEDCAPS capability, the DG_CONTROL / DAT_CAPABILITY
operations:

MSG_GET

Indicates all capabilities that the Source is willing to negotiate in State 5 or 6.

MSG_SET

Specifies which capabilities the application wishes to negotiate in States 5 or 6.
MSG_GETCURRENT

Provides a list of all capabilities which the Source and application have agreed to allow to
be negotiated in States 5 or 6.

As with any other capability, if the Source does not support negotiating
CAP_EXTENDEDCAPS, it will return the Return Code TWRC_FAILURE with the Condition
Code TWCC_CAPUNSUPPORTED.

If an application attempts to set a capability in State 5 or 6 and the Source has not previously
agreed to this arrangement, the operation will fail with a Return Code of TWRC_FAILURE and
a Condition Code of TWCC_SEQERROR.

If an application does not use the Source’s user interface but presents its own, the application
controls the state of the Source explicitly. If the application wants to set the value of any
capability, it returns the Source to State 4 and does so. Therefore, an application using its own
user interface will probably not need to use CAP_EXTENDEDCAPS.

Options for Transferring Data

As discussed previously, there are three modes defined by TWAIN for transferring data:

* Native
» Disk File
» Buffered Memory

A Source is required to support Native and Buffered Memory transfers.

Native Mode Transfer

The use of Native mode, the default mode, for transferring data was covered in Chapter 3.
There is one potential limitation that can occur in a Native mode transfer. That is, there may
not be an adequately large block of RAM available to hold the image. This situation will not be
discovered until the transfer is attempted when the application issues the DG_IMAGE /
DAT_IMAGENATIVEXFER /7 MSG_GET operation.

TWAIN 1.9 Specification 4-79

Chapter 4

4-80

When the lack of memory appears, the Source may respond in one of several ways. It can:

« Simply fail the operation.

» Clip the image to make it fit in the available RAM - The Source should notify the user
that the clipping operation is taking place due to limited RAM. The clipping should
maintain both the aspect ratio of the selected image and the origin (upper-left).

« Interact with the user to allow them to resize the image or cancel the capture.

The Return Code / Condition Code returned from the DG_IMAGE /
DAT_IMAGENATIVEXFER / MSG_GET operation may indicate one of these actions occurred.

If the Return Code is TWRC_XFERDONE:

This indicates the transfer was completed and the session is in State 7. However, it does not
guarantee that the Source did not clip the image to make it fit. Even if the application issued a
DG_IMAGE / DAT_IMAGEINFO /7 MSG_GET operation prior to the transfer to determine the
image size, it cannot assume that the ImageWidth and ImageLength values returned from that
operation really apply to the image that was ultimately transferred. If the dimensions of the
image are important to the application, the application should always check the actual
transferred image size after the transfer is completed. To do this:

1. Execute a DG_CONTROL / DAT_PENDINGXFERS /7 MSG_ENDXFER operation to
move the session from State 7 to State 6 (or 5).

2. Determine the actual size of the image that was transferred:
a. On Windows - Read the DIB header
b. On Macintosh - Check the picFrame in the Picture

If the Return Code is TWRC_CANCEL:

The acquisition was canceled by the user. The session is in State 7. Execute a DG_CONTROL /
DAT_PENDINGXFERS /7 MSG_ENDXFER operation to move the session from State 7 to State 6
(or 5).

If the Return Code is TWRC_FAILURE:

Check the Condition Code to determine the cause of the failure. The session is in State 6. No
memory was allocated for the DIB or PICT. The image is still pending. If lack of memory was
the cause, you can try to free additional memory or discard the pending image by executing
DG_CONTROL / DAT_PENDINGXFERS /7 MSG_ENDXFER.

TWAIN 1.9 Specification

Advanced Application Implementation

Disk File Mode Transfer

Beginning with version 1.9, there are now two file transfer mechanisms available. Windows
developers may continue to use the TWSX_FILE option. Macintosh developers must use
TWSX_FILE2, instead of TWSX_FILE, in order to correctly address image and audio files in the
newer versions of the operating system.

Determine if a Source Supports the Disk File Mode
e Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation.
» Setthe TW_CAPABILITY’s Cap field to ICAP_XFERMECH.

e The Source returns information about the transfer modes it supports in the container
structure pointed to by the hContainer field of the TW_CAPABILITY structure. The disk
file mode is identified as TWSX_FILE or TWSX_FILE2. Sources are not required to
support Disk File Transfer so it is important to verify its support.

After Verifying Disk File Transfer is Supported, Set Up the Transfer

During State 4:

» Set the ICAP_XFERMECH to TWSX_FILE or TWSX_FILE2. Use the DG_CONTROL
/ DAT_CAPABILITY / MSG_SET operation.

e Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation to determine
which file formats the Source can support. Set TW_CAPABILITY.Cap to
ICAP_IMAGEFILEFORMAT and execute the MSG_GET. The Source returns the
supported format identifiers which start with TWFF_ and may include TWFF_PICT,
TWFF_BMP, TWFF_TIFF, etc. They are listed in the TWAIN.H file and in the
Constants section of Chapter 8.

During States 4, 5, or 6:

To set up the transfer the DG_CONTROL / DAT_SETUPFILEXFER or DG_CONTROL /
DAT_SETUPFILEXFER?2 operations of MSG_GET, MSG_GETDEFAULT, and MSG_SET
can be used.

The data structure used in the DSM_Entry call is a TW_SETUPFILEXFER structure (for
DAT_SETUPFILEXFER, on Windows and pre-1.9 Macintosh Sources and Applications):

typedef struct {

TW STR255 Fi | eNane; /* File to contain data */
TW_ Ul NT16 For mat ; /* A TWFF_xxxx const ant */
TW HANDLE Vref Num /* Used for Macintosh only */

} TW.SETUPFI LEXFER, FAR *pTW SETUPFI LEXFER;

Macintosh developers must use the TW_SETUPFILEXFER2 structure (along with
DAT_SETUPFILEXFER2) for TWAIN versions 1.9 and higher:

typedef struct {

TW MEVREF Fi | eNane; /* File to contain data */
TW Ul NT16 Fi | eNaneType; /* TWY_STR1024 or TWIY_UNI 512 */
TW_ Ul NT16 For mat ; /[* A TWFF_xxxx const ant */
TW HANDLE Vref Num /* Used for Macintosh only */
TW_ Ul NT32 par | D; /* Used for Macintosh only */

} TWSETUPFI LEXFER2, FAR *pTW SETUPFI LEXFERZ;

TWAIN 1.9 Specification 4-81

Chapter 4

4-82

The application could use the MSG_GETDEFAULT operation to determine the default file
format and filename (TWAIN.TMP or TWAIN.AUD in the current directory). If
acceptable, the application could just use that file. However, most applications prefer to set
their own values for filename and format. The MSG_SET operation allows this. It is done
during State 6. To set your own filename and format, do the following:

Allocate the required TW_SETUPFILEXFER or TW_SETUPFILEXFER?2 structure.
Then, fill in the appropriate fields:

1.

2.

a.

FileName — the desired filename. On Windows, be sure to include the complete
path name. If using the TW_SETUPFILEXFER?2 structure, be sure to allocate the
space needed for a TWTY_STR1024 or a TWTY_UNI512 first.

FileNameFormat — for the TW_SETUPFILEXFER?2 structure only. This field
identifies what the FileName memory reference is pointing to: either a 1024-
character ANSI string, or a 512-character Unicode string.

Format — the constant for the desired, and supported, format (TWFF_xxxx). If you
set it to an unsupported format, the operation returns TWRC_FAILURE /
TWCC_BADVALUE and the Source resets itself to write data to the default file.

VRefNum — On Macintosh, write the file’s volume reference number. On
Windows, fill in the field with a TWON_DONTCARELS6.

ParID — On Macintosh, write the file’s parent directory ID. On Windows, fill in the
field with a TWON_DONTCARE16.

Invoke the DG_CONTROL / DAT_SETUPFILEXFER /7 MSG_SET or the
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET, as appropriate.

Execute the Transfer into the File

After the application receives the MSG_XFERREADY notice from the Source and has issued the
DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET or the DG_CONTROL /
DAT_SETUPFILEXFER / MSG_GET operation.:

Use the following operation: DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET

This operation does not have an associated data structure but just uses NULL for the pData
parameter in the DSM_Entry call.

If the application has not specified a filename (during the setup) - the Source will use
either its default file or the last file information it was given.

If the file specified by the application does not exist - the Source should create it.

If the file exists but already has data in it - the Source should overwrite the existing data.
Notice, if you are transferring multiple files and using the same file name each time, you
will overwrite the data unless you copy it to a different filename between transfers.

Note:

The application cannot abort a Disk File transfer once initiated. However, the Source’s
user interface may allow the user to cancel the transfer.

TWAIN 1.9 Specification

Advanced Application Implementation

Following execution, be sure to check the Return Code:

TWRC_XFERDONE: File was written successfully. The application needs to invoke the
DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER to transition the session back
to State 6 (or 5) as was illustrated in Chapter 3.

TWRC_CANCEL: The user canceled the transfer. The contents of the file are undefined.
Invoke DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER to transition the
session back to State 6 (or 5) as was illustrated in Chapter 3.

TWRC_FAILURE

The Source remained in State 6.

The contents of the file are undefined.

The image is still pending. To discard it, use DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER.

Check the Condition Code to determine the cause of the failures. The alternatives are:
TWCC_BADDEST = Operation aimed at invalid Source

TWCC_OPERATIONERROR = Either the file existed but could not be accessed or a
system error occurred during the writing

TWCC_SEQERROR = Operation invoked in invalid state (i.e. not 6)

Buffered Memory Mode Transfer

Set Capability Values for the Buffered Memory Mode, if Desired

Data is typically transferred in uncompressed format. However, if you are interested in
knowing if the Source can transfer compressed data when using the buffered memory mode,
perform a DG_CONTROL / DAT_CAPABILITY / MSG_GET on the ICAP_COMPRESSION.
The values will include TWCP_NONE (the default) and perhaps others such as
TWCP_PACKBITS, TWCP_JPEG ,etc. (See the list in the Constants section of Chapter 8.) More
information on compression is available later in this chapter in the section called Transfer of
Compressed Data.

TWAIN 1.9 Specification 4-83

Chapter 4

Set up the Transfer

During State 4:

Set the ICAP_XFERMECH to TWSX_MEMORY by using the DG_CONTROL /
DAT_CAPABILITY /7 MSG_SET operation.

During States 4, 5, or 6:

The DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation is used by the
application to determine what buffer sizes the Source wants to use during the transfer. The
Source might have more accurate information in State 6.

The data structure used in the DSM_Entry call isa TW_SETUPMEMXFER structure:

typedef struct {
TW_ Ul NT32 M nBuf Size /* Mnimmbuffer size in bytes */
TW_ Ul NT32 MaxBuf Si ze /* Maxi mum buffer size in bytes */
TW_ Ul NT32 Preferred /* Preferred buffer size in bytes */
} TW SETUPMEMXFER, FAR *pTW SETUPMEMXFER;

The Source will fill in the appropriate values for its device.
Buffers Used for Uncompressed Strip Transfers

» The application is responsible for allocating and deallocating all memory used during the
buffered memory transfer.

» For optimal performance, create buffers of the Preferred size.

 Inall cases, the size of the allocated buffers must be within the limits of MinBufSize to
MaxBufSize. If outside of these limits, the Source will fail the transfer operation with a
Return Code of TWRC_FAILURE 7/ TWCC_BADVALUE.

 If using more than one buffer, all buffers must be the same size.
» Raster lines must be double-word aligned and padded with zeros is recommended .
Execute the Transfer Using Buffers

After the application receives the MSG_XFERREADY notice from the Source and has issued the
DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation:

» Allocate one or more buffers of the same size. The best size is the one indicated by the
TW_SETUPMEMXFER.Preferred field. If that is impossible, be certain the buffer size is
between MinBufSize and MaxBufSize.

» Allocate the TW_IMAGEMEMXFER structure. It will be used in the DG_IMAGE /
DAT_IMAGEMEMXFER /7 MSG_GET operation.

4-84 TWAIN 1.9 Specification

Advanced Application Implementation

The TW_IMAGEMEMXEFER structure looks like this:

typedef struct {
TW. Ul NT16 Conpr essi on;
TW Ul NT32 Byt esPer Row,
TW.UI NT32 Col ums;
TW.U NT32 Rows;
TWU NT32 XOfset;
TWU NT32 YO fset;
TW.U NT32 BytesWitten;
TW MEMORY Menory;
} TW.I MAGEMEMXFER, FAR *pTW | MAGEMEMXFER,

Fill in the TW_IMAGEMEMXFER’s first field with TWON_DONTCARE16 and the following
six fields with TWON_DONTCARE32.

The TW_MEMORY structure embedded in there looks like this:

typedef struct {
TW.U NT32 Fl ags;
TW.UI NT32 Lengt h;
TW MEMREF TheMem
} TW MEMORY, FAR *pTW MEMORY;

Fill in the TW_MEMORY structure as follows:

Memory.Flags
Place TWMF_APPOWNS bit-wise ORed with TWMF_POINTER or TWMF_HANDLE

Memory.Length
The size of the buffer in bytes

Memory. TheMem

A handle or pointer to the memory buffer allocated above (depending on which one
was specified in the Flags field).

Following each buffer transfer, the Source will have filled in all the fields except Memory which
it uses as a reference to the memory block for the data.

The flow of the transfer of buffers is as follows:

Step 1

Buffered Memory transfers provide no embedded header information. Therefore, the
application must determine the image attributes. After receiving the MSG_XFERREADY,
i.e. while in State 6, the application issues the DG_IMAGE /7 DAT_IMAGEINFO /
MSG_GET and DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET operations to learn
about the image’s bitmap characteristics and the size and location of the original image on
the original page (before scaling or other processing). If additional information is desired,
use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation.

Step 2
The application issues DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET.

TWAIN 1.9 Specification 4-85

Chapter 4

4-86

Step 3
The application checks the Return Code.

If TWRC_SUCCESS:

Examine the TW_IMAGEMEMXFER structure for information about the buffer. If
you plan to reuse the buffer, copy the data to another location.

Loop back to Step 2 to get another buffer. Be sure to reinitialize the information in
the TW_IMAGEMEMXFER structure (including the Memory fields), if necessary.
Issue another DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET operation.

If TWRC_XFERDONE:

This is how the Source indicates it just transferred the last buffer successfully.
Examine the TW_IMAGEMEMXFER structure for information about the buffer.
Perhaps, copy the data to another location, as desired, then go to Step 4.

If TWRC_CANCEL:

The user aborted the transfer. The application must send a DG_CONTROL /
DAT_PENDINGXFERS /7 MSG_ENDXFER as described in Chapter 3 to move from
State 7 to State 6 (or 5).

If TWRC_FAILURE:

Examine the Condition Code to determine the cause and handle it.
If the failure occurred during the transfer of the first buffer, the session is in State 6.
If the failure occurred on a subsequent buffer, the session is in State 7.

The contents of the buffer are invalid and the transfer of the buffer is still pending.
To abort it, use DG_CONTROL / DAT_PENDINGXFERS 7 MSG_ENDXFER.

Step 4

Once the TWRC_XFERDONE has been returned, the application must send the
DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER to conclude the transfer. This
was described in Chapter 3 in the section called State 7 to 6 to 5 - Conclude the Transfer.

Note:

The majority of Sources divide the image data into strips when using buffered
transfers. A strip is a horizontal band starting at the leftmost side of the image and
spanning the entire width but covering just a portion of the image length. The
application can verify that strips are being used if the information returned from the
Source in the TW_IMAGEMEMXFER structure’s XOffset field is zero and the
Columns field is equal to the value in the TW_IMAGEINFO structure’s ImageWidth
field.

An alternative to strips is the use of tiles although they are used by very few Sources. Refer to
the TW_IMAGEMEMXFER information in Chapter 8 for an illustration of tiles.

TWAIN 1.9 Specification

Advanced Application Implementation

The Image Data and Its Layout

The image which is transferred from the Source to the application has several attributes. Some
attributes describe the size of the image. Some describe where the image was located on the
original page. Still others might describe information such as resolution or number of bits per
pixel. TWAIN provides means for the application to learn about these attributes.

Users are often able to select and modify an image’s attributes through the Source’s user
interface. Additionally, TWAIN provides capabilities and operations that allow the application
to impact these attributes prior to acquisition and transfer.

Getting Information About the Image That will be Transferred

Before the transfer occurs, while in State 6, the Source can provide information to the
application about the actual image that it is about to transfer. Note, the information is lost once
the transfer takes place so the application should save it, if needed. This information can be
retrieved through two operations:

+ DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
 DG_IMAGE / DAT_IMAGEINFO / MSG_GET

The area of an image to be acquired will always be a rectangle called a frame. There may be
one or more frames located on a page. Frames can be selected by the user or designated by the
application. The TW_IMAGELAYOUT structure communicates where the image was located
on the original page relative to the origin of the page. It also indicates, in its FrameNumber
field, if this is the first frame, or a later frame, to be acquired from the page.

The TW_IMAGELAYOUT structure looks like this:
typedef struct {

TW FRAME Frane;

TW_UI NT32 Docunent Nunber ;
TW_UI NT32 PageNumber ;
TW_UI NT32 Fr aneNunber ;

} TW.I MAGELAYOUT, FAR *pTW | MAGELAYOUT;

The TW_FRAME structure specifies the values for the Left, Right, Top, and Bottom of the frame
to be acquired. Values are given in ICAP_UNITS.

Origin
of Page

Frame.

Top

TW_IMAGELAYOUT.

=
=)
Q
3
w
Q
=4
=
=
=

Frame.
Bottom

K————>
TW_IMAGELAYOUT. Image
Frame.

L ready

to be

Acquired

TW_IMAGEINFO.
ImageLength

TW_IMAGELAYOUT. TW_IMAGEINFQ.

Frame. ;
Right ImageWidth

Jr,

Figure 4-1. TW_FRAME Structure

TWAIN 1.9 Specification 4-87

Chapter 4

4-88

The DG_IMAGE / DAT_IMAGEINFO / MSG_GET operation communicates other attributes of
the image being transferred. The TW_IMAGEINFO structure looks like this:

typedef struct {

TW FI X32
TW FI X32
TW I NT32
TW | NT32
TW I NT16
TW I NT16
TW I NT16
TW BOOL
TW I NT16
TW Ul NT16

XResol uti on;
YResol uti on;

| mgeW dt h;

| magelLengt h;
Sanpl esPer Pi xel ;
Bi t sPer Sanpl e[8] ;
Bi t sPer Pi xel ;

Pl anar ;

Pi xel Type;

Conpr essi on;

} TWI MAGEI NFO, FAR * pTW I MAGEI NFQ,

Notice how the ImageWidth and ImageLength relate to the frame described by the
TW_IMAGELAYOUT structure.

Changing the Image Attributes

Normally, the user will select the desired attributes. However, the application may wish to do
this initially during State 4. For example, if the user interface will not be displayed, the
application may wish to select the frame. The application can use a DG_IMAGE /
DAT_IMAGELAYOUT / MSG_SET operation to define the area (frame) to be acquired.
Although, there is no corresponding DG_IMAGE / DAT_IMAGEINFO / MSG_SET operation,
the application can change those attributes by setting capabilities and the TW_IMAGELAYOUT

data structure.

Here are the relationships:

TW_IMAGEINFO fields Capability or data structure that impacts the attribute

XResolution
YResolution
ImageWidth
ImageLength
SamplesPerPixel
BitsPerSample
BitsPerPixel
Planar
PixelType

Compression

ICAP_XRESOLUTION

ICAP_YRESOLUTION

TW_IMAGELAYOUT.TW_FRAME.Right - TW_FRAME.Left **
TW_IMAGELAYOUT.TW_FRAME.Bottom - TW_FRAME.Top **
ICAP_PIXELTYPE (i.e. TWPT_BW has 1, TWPT_RGB has 3)
Calculated by BitsPerPixel divided by SamplesPerPixel
ICAP_BITDEPTH

ICAP_PLANARCHUNKY

ICAP_PIXELTYPE

ICAP_COMPRESSION

**]mageWidth and ImageLength are actually provided in pixels whereas TW_FRAME uses

ICAP_UNITS.

TWAIN 1.9 Specification

Advanced Application Implementation

Resolving Conflict Between ICAP_FRAMES, ICAP_SUPPORTEDSIZES, DAT_IMAGELAYOUT

Since there are several ways to negotiate the scan area, it becomes confusing when deciding
what should take precedence. It is logical to assume that the last method used to set the frame
will dictate the current frame. However, it may still be confusing to decide how that is
represented during a MSG_GET operation for any of the three methods. The following
behavior is suggested.

Note: Frame extents are only limited by ICAP_PHYSICALWIDTH and
ICAP_PHYSICALHEIGHT. Setting ICAP_SUPPORTEDSIZES does NOT imply a new
extent limitation. TWSS_xxxx sizes are simply predefined fixed frame sizes.

e If the frame is setin DAT_IMAGELAYOUT

v ICAP_FRAMES shall respond to MSG_GETCURRENT with the dimensions of the
frame set in the DAT_IMAGELAYOUT call.

v ICAP_SUPPORTEDSIZES shall respond to MSG_GETCURRENT with TWSS_NONE

 If the current frame is set from ICAP_FRAMES

v DAT_IMAGELAYOUT shall respond with the dimensions of the current frame set in
ICAP_FRAMES

v ICAP_SUPPORTEDSIZES shall respond to MSG_GETCURRENT with TWSS_NONE

« If the current fixed frame is set from ICAP_SUPPORTEDSIZES

v DAT_IMAGELAYOUT shall respond to MSG_GET with the dimensions of the fixed
frame specified in ICAP_SUPPORTEDSIZES

v ICAP_FRAMES shall respond to MSG_GETCURRENT with the dimensions of the
fixed frame specified in ICAP_SUPPORTEDSIZES

ICAP_ROTATION, ICAP_ORIENTATION Affect on ICAP_FRAMES, DAT_IMAGELAYOQOUT,
DAT_IMAGEINFO

There is considerable confusion when trying to resolve the affect of Rotation and Orientation on
the current frames and image layout. After careful consideration of the specification it has been
concluded that ICAP_ROTATION and ICAP_ORIENTATION shall be applied after
considering ICAP_FRAMES and DAT_IMAGELAYOUT.

Obviously a change in orientation will have an effect on the output image dimensions, so these
must be reflected in DAT_IMAGEINFO during State 6. The resulting image dimensions shall
be reported by the data source after considering the affect of the rotation on the current frame.

ICAP_ORIENTATION and ICAP_ROTATION are additive. The original frame is modified by
ICAP_ORIENTATION as it is downloaded to the device by the Source, and represents the
orientation of the paper being scanned. ICAP_ROTATION is then applied to the captured
image to yield the final framing information that is reported to the Application in State 6 or 7.
One possible reason for combining these two values is to use them to cancel each other out. For
instance, some scanners with automatic document feeders may receive a performance benefit
from describing an ICAP_ORIENTATION of TWOR_LANDSCAPE in combination with an
ICAP_ROTATION of 90 degrees. This would allow the user to feed images in a landscape
orientation (which lets them feed faster), while rotating the captured images back to portrait
(which is the way the user wants to view them).

TWAIN 1.9 Specification 4-89

Chapter 4

Transfer of Multiple Images

4-90

Chapter 3 discussed the transfer of a single image. Transferring multiple images simply
requires looping through the single-image transfer process repeatedly whenever more images
are available. Two classes of issues arise when considering multiple image transfer under
TWAIN:

» What state transitions are allowable when a session is at an inter-image boundary?

» What facilities are available to support the operation of a document feeder? This
includes issues related to high-performance scanning.

This section starts with a review of the single-image transfer process. This is followed by a
discussion of options available to an application once the transfer of a single image is complete.
Finally, document feeder issues are presented.

To briefly review the single-image transfer process:
» The application enables the Source and the session moves from State 4 to State 5.

» The Source sends the application a MSG_XFERREADY when an image is ready for
transfer.

» The application uses DG_IMAGE / DAT_IMAGEINFO / MSG_GET and DG_IMAGE /
DAT_IMAGELAYOUT / MSG_GET to get information about the image about to be
transferred.

» The application initiates the transfer using a DG_CONTROL / DAT_IMAGEXxxxXFER /
MSG_GET operation. The transfer occurs.

» Following a successful transfer, the Source returns TWRC_XFERDONE.

» The application sends the DG_CONTROL / DAT_PENDINGXFERS /7 MSG_ENDXFER
operation to acknowledge the end of the transfer and learn the number of pending
transfers.

If the intent behind transferring a single image is to simply flush it from the Source (for
example, an application may want to scan only every other page from a stack placed in a
scanner with a document feeder), the following operation suffices:

e Issue a CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation. As with
normal image transfer, this operation tells the Source that the application has completed
acquisition of the current image, and the Source responds by reporting the number of
pending transfers.

TWAIN 1.9 Specification

Advanced Application Implementation

Preparing for Multiple Image Transfer

The DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation issued by the
application at the end of every image transfer performs two important functions:

It returns a count of pending transfers (in TW_PENDINGXFERS.Count)

« It transitions the session to State 6 (Transfer Ready) if the count of pending transfers is
nonzero, or to State 5 (Source Enabled) if the count is zero. Recall that the count returned
is a positive value if the Source knows the number of images available for acquisition. If
the Source does not know the number of images available, the count returned us -1. The
latter situation can occur if, for example, a document feeder is in use. Note that not
knowing the number of images available includes the possibility that no further images
are available; see the description of DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER for more on this.

We have just seen that after the MSG_ENDXFER operation is issued following an image
transfer, the session is either in State 6 or State 5; that is, the session is still very much in an
active state. If the session is in State 6 (i.e. “an image is available”), the application takes one of
two actions so as to eventually transition the session to State 5 (i.e. “Source is ready to acquire
an image, though none is available):

« It continues to perform the single-image transfer process outlined earlier until no more
images are available, or

e Itissuesa DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET to flush all pending
transfers from the Source.

Once the session is back in State 5, the application has to decide whether to stay in State 5 or
transition down to State 4 (“Source is open, and ready for capability negotiation”.) Two
scenarios are possible here.

In one scenario, the application lets the Source control further state transitions. If the Source
sends ita MSG_XFERREADY, the application restarts the multiple image transfer loop
described above. If the Source sends it a MSG_CLOSEDSREQ (e.g. because the user activated
the “Done” trigger on the Ul displayed by the Source), the application sends back a
DG_CONTROL / DAT_USERINTERFACE /7 MSG_DISABLEDS, thereby putting the session in
State 4.

In the other scenario, the application directly controls session state transitions. For example, the
application may want to shut down the current session as soon as the current batch of images
have been transferred. In this case, the application issues a DG_CONTROL /
DAT_USERINTERFACE /7 MSG_DISABLEDS as soon as the pending transfers count reaches
zero.

It should be noted that there is no “right”, “wrong” or “preferred” scenario for an application
to follow when deciding what to do once all images in the current set have been transferred. If
an application wants to let the user control the termination of a session explicitly, it may well
wait for the Source to send ita MSG_CLOSEDSREQ. On the other hand, the application may
have a strong sense of what constitutes a session; for example, it may want to terminate a scan
session as soon as a blank page is transferred. In such a case, the application will want to
control the condition under which the MSG_DISABLEDS is sent.

TWAIN 1.9 Specification 4-91

Chapter 4

Use of a Document Feeder

4-92

The term document feeder can refer to a physical device’s automatic document feeder, such as
might be available with a scanner, or to the logical feeding ability of an image database. Both
input mechanisms apply although the following text uses the physical feeder for its discussion.
The topics covered in this section are:

« Controlling whether to scan pages from the document feeder or the platen
» Detecting whether or not paper is ready for scanning

e Controlling scan lookahead

Note that these concepts are applicable to scanners that do not have feeders; see the discussion
below for details.

Selecting the Document Feeder

Sometimes the use of a document feeder actually alters how the image is acquired. For
instance, a scanner may move its light bar over a piece of paper if the paper is placed on a
platen. When a document feeder is used, however, the same scanner might hold the light bar
stable and scan the moving paper. To prepare for such variations the application and Source
can explicitly agree to use the document feeder. The negotiation for this action must occur
during State 4 before the Source is enabled using the following capability.

CAP_FEEDERENABLED
Determine if a Source has a document feeder available and, if so, select that option.

» To determine if this capability is supported, use a DG_CONTROL /
DAT_CAPABILITY /7 MSG_GET operation. TWRC_FAILURE /
TWCC_CAPUNSUPPORTED indicates this Source does not have the ability to select
the document feeder.

 If supported, use the DG_CONTROL / DAT_CAPABILITY / MSG_SET operation
during State 4.

» Set TW_CAPABILITY.Cap to CAP_FEEDERENABLED.

» Create a container of type TW_ONEVALUE and set it to TRUE. Reference
TW_CAPABILITY.hContainer to the container.

» Execute the MSG_SET operation and check the Return Code.

If TWRC_SUCCESS then the feeder is available and your request to use it was
accepted. The application can now set other document feeder capabilities.

If TWRC_FAILURE and TWCC_CAPUNSUPPORTED,
TWCC_CAPBADOPERATION, or TWCC_BADVALUE then this Source does not
have a document feeder capability or does not allow it to be selected explicitly.

Note: If an application wanted to prevent the user from using a feeder, the application
should use a MSG_SET operation to set the CAP_FEEDERENABLED capability to
FALSE.

TWAIN 1.9 Specification

Advanced Application Implementation

Detecting Whether an Image is Ready for Acquisition

Having an image ready for acquisition in the Source device is independent of having a
selectable document feeder. There are three possibilities here:

» The Source cannot tell whether an image is available,

« Animage is available for acquisition, or

» No image is available for acquisition

These cases can be detected by first determining whether a Source can tell that image data is
available for acquisition (case 1. vs. cases 2. and 3.) and then determining whether image data is
available (case 2. vs. case 3.)The capabilities used to do so are as follows:

CAP_PAPERDETECTABLE
First, determine if the Source can tell that documents are loaded.

e To check if a Source can detect documents, use the DG_CONTROL /
DAT_CAPABILITY / MSG_GET operation.

» Setthe TW_CAPABILITY.Cap field to CAP_PAPERDETECTABLE.

e The Source returns TWRC_SUCCESS with the hContainer structure’s value set to
TRUE if it can detect a loaded document that is ready for acquisition. If the result
code is TWRC_FAILURE with TWCC_CAPUNSUPPORTED or TWCC_BADVALUE,
then the Source cannot detect that paper is loaded.

Note: CAP_PAPERDETECTABLE can be used independently of
CAP_FEEDERENABLED. Also, an automatic document feeder need not be
present for a Source to support this capability; e.g. a scanner that can detect
paper on its platen should return TRUE.

The application cannot set this capability. The Source is simply reporting on a condition.
CAP_FEEDERLOADED
Next, determine if there are documents loaded in the feeder.

e To check if pages are present, use the DG_CONTROL / DAT_CAPABILITY /
MSG_GET operation.

» Set the TW_CAPABILITY.Cap field to CAP_FEEDERLOADED.

» The Source returns TRUE if there are documents loaded. The information is in the
container structure pointed to by the hContainer field of the TW_CAPABILITY
structure.

Note: Neither CAP_FEEDERENABLED nor CAP_PAPERDETECTABLE need be
TRUE to use this capability. A FALSE indication from this capability simply
indicates that the feeder is not loaded or that the Source’s feeder cannot tell.
For a definitive answer, be sure to check CAP_PAPERDETECTABLE.

TWAIN 1.9 Specification 4-93

Chapter 4

4-94

Controlling Scan Lookahead

With low-end scanners there is usually ample time for the CPU handling the image acquisition
to process incoming image data on-the-fly or in the scan delay between pages. However, with
higher performance scanners the CPU image processing time for a given page can become a
significant fraction of the scan time. This problem can be alleviated if the scanner can scan
ahead image data that the CPU has yet to acquire. This data can be buffered in scanner-local
memory, or stored in main memory by the Source via a DMA operation while the CPU
processes the current image.

Scan look-ahead is not always desirable, however. This is because the decision to continue a
scan may be determined by the results of previously scanned images. For example, a scanning
application may decide to stop a scan whenever it sees a blank page. If scan look-ahead were
always enabled, one or more pages past the blank page may be scanned and transferred to the
scanner’s output bin. Such behavior may be incorrect from the point of view of the
application’s design

We have argued that the ability to control scan look-ahead is highly desirable. However, a
single “enable scan look-ahead” command is insufficient to capture the richness of function
provided by some scanners. In particular, TWAIN’s model of document feeding has each
image (e.g., sheet of paper) transition through a three stage process.

1. Image is in input bin. This action is taken by the user (for example, by placing a stack
of paper into an auto-feeder.)

2. Image is ready for scan. This action causes the next available image to be placed at the
start of the scan area. Set the CAP_AUTOFEED capability(described below)to
automatically feed images to the start of the scan area.

3. Image is scanned. This action actually causes the image to be scanned. For example,
the DG_IMAGE/DAT_IMAGEMEMXFER/MSG_GET operation initiates image
transfer to an application via buffered memory. TWAIN allows a Source to pre-fetch
images into Source-local memory (even before the application requests them) by setting
the CAP_AUTOSCAN capability.

CAP_AUTOFEED
Enable the Source’s automatic document feeding process.
e Use DG_CONTROL / DAT_CAPABILITY / MSG_SET.

» Setthe TW_CAPABILITY.Cap field to CAP_AUTOFEED and set the capability to
TRUE.

* When set to TRUE, the behavior of the Source is to eject one page and feed the next
page after all frames on the first page are acquired. This automatic feeding process
will continue whenever there is image data ready for acquisition (and the Source is in
an enabled state). CAP_FEEDERLOADED is TRUE showing that pages are in the
document feeder.

Note: CAP_FEEDERENABLED must be set to TRUE to use this capability. If not,
the Source should return TWRC_FAILURE /7 TWCC_CAPUNSUPPORTED.

TWAIN 1.9 Specification

Advanced Application Implementation

CAP_AUTOSCAN
Enable the Source’s automatic document scanning process.
* Use DG_CONTROL / DAT_CAPABILITY / MSG_SET.

e Setthe TW_CAPABILITY.Cap field to CAP_AUTOSCAN and set the capability to
TRUE.

» When set to TRUE, the behavior of the Source is to eject one page and scan the next
page after all frames on the first page are acquired. This automatic scanning process
will continue whenever there is image data ready for acquisition (and the Source is in
an enabled state.

Note: Setting CAP_AUTOSCAN to TRUE implicitly sets CAP_AUTOFEED to TRUE
also.

When your application uses automatic document feeding:
» Set CAP_XFERCOUNT to -1 indicating your application can accept multiple images.

» Expect the Source to return the TW_PENDINGXFERS.Count as -1. It indicates the Source
has more images to transfer but it is not sure how many.

» Using automatic document feeding does not change the process of transferring multiple
documents described earlier and in Chapter 3.

Control of the Document Feeding by the Application

In addition to automatic document feeding, TWAIN provides an option for an application to
manually control the feeding of documents. This is only possible if the Source agrees to
negotiate the following capabilities during States 5 and 6 by use of CAP_EXTENDEDCAPS. If
CAP_AUTOFEED is set to TRUE, it can impact the way the Source responds to the following
capabilities as indicated below.

CAP_FEEDPAGE

« If the application sets this capability to TRUE, the Source will eject the current page
(if any) and feed the next page.

» Towork as described requires that CAP_FEEDERENABLED and
CAP_FEEDERLOADED be TRUE.

« If CAP_AUTOFEED is TRUE, the action is the still the same.

» The page ejected corresponds to the image that the application is acquiring (or is
about to acquire). Therefore, if CAP_AUTOSCAN is TRUE and one or more pages
have been scanned speculatively, the page ejected may correspond to a page that has
already been scanned into Source-local buffers.

CAP_CLEARPAGE

« If the application sets this capability to TRUE, the Source will eject the current page
and leave the feeder acquire area empty (that is, with no image ready to acquire).

» Towork as described, this requires that CAP_FEEDERENABLED be TRUE and there
be a paper in the feeder acquire area to begin with.

« If CAP_AUTOFEED is TRUE, the next page will advance to the acquire area.

» If CAP_AUTOSCAN is TRUE, setting this capability returns TWRC_FAILURE with
TWCC_BADVALUE.

TWAIN 1.9 Specification 4-95

Chapter 4

CAP_REWINDPAGE

« If the application sets this capability to TRUE, the Source will return the current page
to the input area and return the last page from the output area into the acquisition

area.

» To work as described requires that CAP_FEEDERENABLED be TRUE.

* If CAP_AUTOFEED is TRUE, the normal automatic feeding will continue after all
frames of this page are acquired.

» The page rewound corresponds to the image that the application is acquiring.
Therefore, if CAP_AUTOSCAN is TRUE and one or more pages have been scanned
speculatively, the page rewound may correspond to a page that has already been
scanned into Source-local buffers.

Transfer of Compressed Data

4-96

When using the Buffered Memory mode for transferring images, some Sources may support
the transfer of data in a compressed format.

To determine if a Source supports transfer of compressed data and to set the capability
1. Usethe DG_CONTROL / DAT_CAPABILITY / MSG_GET operation.
2. Setthe TW_CAPABILITY.Cap field to ICAP_COMPRESSION.

3. The Source returns information about the compression schemes they support in the
container structure pointed to by the hContainer field of TW_CAPABILITY. The
identifiers for the compression alternatives all begin with TWCP_, such as
TWCP_PACKBITS, and can be seen in the Constants section of Chapter 8 and in the
TWAIN.H file.

4. If you wish to negotiate for the transfer to use one of the compression schemes shown,
use the DG_CONTROL / DAT_CAPABILITY / MSG_SET operation.

The TW_IMAGEMEMXFER structure is used with the DG_IMAGE / DAT_IMAGEMEMXFER
/ MSG_GET operation. The structure looks like this:

typedef struct {

TW Ul NT16
TW Ul NT32
TW Ul NT32
TW Ul NT32
TW Ul NT32
TW Ul NT32
TW Ul NT32
TW MEMORY

Conpression; /* A TWCP_xxxx constant */
Byt esPer Row;,

Col umms;

Rows;

XOf f set ;

YO f set ;

BytesWitten;

Menory;

} TW.I MAGEMEMXFER, FAR *pTW | MAGEVEMXFER;

TWAIN 1.9 Specification

Advanced Application Implementation

When compressed strips of data are transferred:

» The BytesPerRow field will be set to 0. The Columns, Rows, XOffset, and YOffset fields
will contain TWON_DONTCARE32 indicating the fields hold invalid values. (The
original image height and width are available by using the DG_IMAGE /
DAT_IMAGEINFO / MSG_GET operation during State 6 prior to the transfer.)

» Transfer buffers are always completely filled by the Source. For compressed data, it is
very likely that at least one partial line will be written into the buffer.

» The application is responsible for deallocating the buffers.

When compressed, tiled data are transferred:

» All fields in the structure contain valid data. BytesPerRow, Columns, Rows, XOffset, and
YOffset all describe the uncompressed tile. Compression and BytesWritten describe the
compressed tile.

 In this case, unlike with compressed, strip data transfer, the Source allocates the transfer
buffers. This allows the Source to create buffers of differing sizes so that complete,
compressed tiles can be transferred to the application intact (not split between sequential
buffers). Under these conditions, the application should set the fields of the
TW_MEMORY structure so Flags is TWMF_DSOWNS, Length is TWON_DONTCARE32
and TheMem is NULL. The Source must assume that the application will keep the
previous buffer rather than releasing it. Therefore, the Source must allocate a new buffer
for each transfer.

» The application is responsible for deallocating the buffers.

» Finally, the application cannot assume that the tiles will be transferred in any particular,
logical order.

JPEG Compression

TWAIN supports transfer of several forms of compressed data. JPEG compression is one of
them. The JPEG compression algorithm provides compression ratios in the range of 10:1 to 25:1
for grayscale and full-color images, often without causing visible loss of image quality. This
compression, which is created by the application of a series of “perceptual” filters, is achieved
in three stages:

Color Space Transformation and Component Subsampling
(Color Images Only, Not for Grayscale)

The human eye is far more sensitive to light intensity (luminance) than it is to light frequency
(chrominance, or “color”) since it has, on average, 100 million detectors for brightness (the
“rods”) but only about 6 million detectors for color (the “cones”). Substantial image
compression can be achieved simply by converting a color image into a more efficient
luminance/chrominance color space and then subsampling the chrominance components.

TWAIN 1.9 Specification 4-97

Chapter 4

4-98

This conversion is provided for by the TW_JPEGCOMPRESSION structure. By specifying the
TW_JPEGCOMPRESSION.ColorSpace = TWPT_YUV, Source RGB data is converted into more
space-efficient YUV data (better known as CCIR 601-1 or YCbCr).
TW_JPEGCOMPRESSION.SubSampling specifies the ratio of luminance to chrominance
samples in the resulting YUV data stream, and a typical choice calls for two luminance samples
for every chrominance sample. This type of subsampling is specified by entering 0x21102110
into the TW_JPEGCOMPRESSION.SubSampling field. A larger ratio of four luminance
samples for every chrominance sample is represented by 0x41104110. To sample two
luminance values for every chrominance sample in both the horizontal and vertical axes, use a
value of 0x21102110.

Application of the Discrete Cosine Transform (DCT) and Quantization

The original components (with or without color space conversion) are next mathematically
converted into a spatial frequency representation using the DCT and then filtered with
guantization matrices (each frequency component is divided by its corresponding member in a
guantization matrix). The quantization matrices are specified by
TW_JPEGCOMPRESSION.QuantTable[] and up to four quantization matrices may be defined
for up to four different original components. TW_JPEGCOMPRESSION.QuantMap[] maps the
particular original component to its respective quantization matrix.

Note: Defaults are provided for the quantization map and tables are suggested in Section K
of the JPEG Draft International Standard, version 10918-1 are used as the default
tables for QuantTable, HuffmanDC, and HuffmanAC by TWAIN. The default tables
are selected by putting NULL into each of the TW_JPEGCOMPRESSION.QuantTable[]
entries.

Huffman encoding

The resulting coefficients from the DCT and quantization steps are further compressed in one
final stage using a loss-less compression algorithm called Huffman encoding. Application
developers can provide Huffman tables, though typically the default tables—selected by
writing NULL into TW_JPEGCOMPRESSION.HuffmanDCJ] and
TW_JPEGCOMPRESSION.HuffmanAC[]—yield very good results.

The algorithm optionally supports the use of restart marker codes. The purpose of these
markers is to allow random access to strips of compressed data in JPEG data stream. They are
more fully described in the JPEG specification.

TWAIN 1.9 Specification

Advanced Application Implementation

See Chapter 8 for the definition of the TW_JPEGCOMPRESSION data structure. Example data
structures are shown below for RGB image compression and grayscale image compression;

/* RGB imge conpression - YUV conversion and 2:1:1 chrom nance */

/* subsanpling */
typedef struct TW.JPEGCOWPRESSI ON nyJPEG

nyJPEG. Col or Space = TWPT_YLWV, /1 convert R@&B to YW
nyJPEG SubSanpl i ng = 0x21102110; /1 2 Y for each U, V

; 11y, U Vv
; // No restart markers

; /1 Y conponent uses table0
; /1 U conponent uses table 1
; /1 V conponent uses table 1

myJPEG NuntConponent s 3
nmyJPEG Rest art Fr equency 0
nyJPEG. Quant Map][0] =0
1
1

nyJPEG Quant Map[1]
nyJPEG. Quant Map|[2]

nyJPEG Quant Tabl e[0] = NULL; /1 select defaults for quant
/1 tables

nyJPEG Quant Tabl e[1] = NULL; I

nyJPEG. Quant Tabl e[2] = NULL; /1

nyJPEG Huf f manMap[0] = 0; /1 Y conponent uses DC & AC
/1l table O

nyJPEG Huf f manMap[1] = 1; /1 U conponent uses DC & AC
/1l table 1

nyJPEG Huf f manMap[2] = 1; /1 V conponent uses DC & AC
/1l table 1

nyJPEG Huf f manDC[0] = NULL; /1 select default for Huffnan
/1 tables

nyJPEG Huf f manDC[1] = NULL; I

nyJPEG. Huf f manAC] 0] = NULL; /1

nyJPEG Huf f manAC 1] = NULL; I

/* Grayscal e i nage conpression - no col or space conversion or */

/* subsanpling */

typedef struct TW.JPEGCOWPRESSI ON nyJPEG

nyJPEG. Col or Space = TWPT_GRAY; /1l Grayscal e data

nyJPEG SubSanpl i ng = 0x10001000; /1 no chrom nance components

nyJPEG. NumConponent s = 1; /'l Grayscal e

nyJPEG Rest art Frequency = 0; /1 No restart markers

nyJPEG. Quant Map][0] = 0; /1 select default for quant
/1 map

nyJPEG. Quant Tabl e[0] = NULL; /1

nyJPEG Huf f manMap[0] = 0; /1 select default for Huffnan
/1 tables

nyJPEG Huf f manDC[0] = NULL; I

nyJPEG. Huf f manAC] 0] = NULL; /1

The resulting compressed images from these examples will be compatible with the JPEG File
Interchange Format (JFIF version 1.1) and will therefore be usable by a variety of applications
that are JFIF-aware.

TWAIN 1.9 Specification 4-99

Chapter 4

Alternative User Interfaces

Alternatives to Using the Source Manager’s Select Source Dialog

TWAIN ships its Source Manager code to act as the communication vehicle between
application and Source. One of the services the Source Manager provides is locating all
available Sources that meet the application’s requirements and presenting those to the user for
selection.

It is recommended that the application use this approach. However, the application is not
required to use this service. Two alternatives exist:

» The application can develop and present its own custom selection interface to the user.
This is presented in response to the user choosing Select Source... from its menu.

» Or, if the application is dedicated to control of a specific Source, the application can
transparently select the Source. In this case, the application does not functionally need to
have a Select Source... option in the menu but a grayed-out one should be displayed for
consistency with all other TWAIN-compliant applications.

Displaying a custom selection interface:

1. Usethe DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST operation to have the
Source Manager locate the first Source available. The name of the Source is contained
in the TW_IDENTITY.ProductName field. Save the TW_IDENTITY structure.

2. Usethe DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT to have the Source
Manager locate the next Source. Repeatedly use this operation until it returns
TWRC_ENDOFLIST indicating no more Sources are available. Save the
TW_IDENTITY structure.

3. Use the ProductName information to display the choices to the user. Once they have
made their selection, use the saved TW_IDENTITY structure and the DG_CONTROL /
DAT_IDENTITY / MSG_OPENDS operation to have the Source Manager open the
desired Source. (Note, using this approach, as opposed to the MSG_USERSELECT
operation, the Source Manager does not update the system default Source information
to reflect your choice.)

Transparently selecting a Source;

If the application wants to open the system default Source , use the DG_CONTROL /
DAT_IDENTITY / MSG_GETDEFAULT operation to have the Source Manager locate the
default Source and fill the TW_IDENTITY structure with information about it. The name of
the Source is contained in the TW_IDENTITY.ProductName field. Save the TW_IDENTITY
structure.

OR

If you know the ProductName of the Source you wish to use and it is not the system default
Source, use the DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST and DG_CONTROL
/ DAT_IDENTITY / MSG_GETNEXT operations to have the Source Manager locate each
Source. You must continue looking at Sources until you verify that the desired Source is
available. Save the TW_IDENTITY structure when you locate the Source you want. If the
Return Code TWRC_ENDOFLIST appears before the desired Source is located, it is not
available.

4-100 TWAIN 1.9 Specification

Advanced Application Implementation

Use the saved TW_IDENTITY structure and the DG_CONTROL / DAT_IDENTITY /
MSG_OPENDS operation to have the Source Manager open the desired Source. (Note,
using this approach, rather than MSG_USERSELECT, the Source Manager does not update
the system default Source information to reflect your choice.)

Alternatives to Using the Source’s User Interface

Just as with the Source Manager’s Select Source dialog, the application may ask to not use the
Source’s user interface. Certain types of applications may not want to have the Source’s user
interface displayed. An example of this can be seen in some text recognition packages that
wish to negotiate a few capabilities (i.e. pixel type, resolution, page size) and then proceed
directly to acquiring and transferring the data.

To Enable the Source without Displaying its User Interface

Use the DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS operation.
Set the ShowUlI field of the TW_USERINTERFACE structure to FALSE.

When the command is received and accepted (TWRC_SUCCESS), the Source does not
display a user interface but is armed to begin capturing data. For example, in a flatbed
scanner, the light bar will light and begin to move. A handheld scanner will be armed
and ready to acquire data when the “go” button is pressed on the scanner. Other devices
may respond differently but they all will either begin acquisition immediately or be
armed to begin acquiring data as soon as the user interacts with the device.

Capability Negotiation is Essential when the Source’s User Interface is not Displayed

Since the Source’s user interface is not displayed, the Source will not be giving the user
the opportunity to select the information to be acquired, etc. Unless default values are
acceptable, current values for all image acquisition and control parameters must be
negotiated before the Source is enabled, i.e. while the session is in State 4.

When TW_USERINTERFACE.ShowUl is set to FALSE:

The application is still required to pass all events to the Source (via the DG_CONTROL /
DAT_EVENT / MSG_PROCESSEVENT operation) while the Source is enabled.

The Source must display the minimum possible user interface containing only those
controls required to make the device useful in context. In general, this means that no
user interface is displayed, however certain devices may still require a trigger to initiate
the scan.

The Source still displays a progress indicator during the acquisition. The application can
suppress this by setting CAP_INDICATORS to FALSE, if the Source allows this.

The Source still displays errors and other messages related to the operation of its device.
This cannot be turned off.

The Source still sends the application a MSG_XFERREADY notice when the data is ready
to be transferred.

The Source may or may not send a MSG_CLOSEDSREQ to the application asking to be
closed since this is often user-initiated. Therefore, after the Source has returned to State 5
(following the DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation
and the TW_PENDINGXFERS.Count = 0), the application can send the DG_CONTROL /
DAT_USERINTERFACE / MSG_DISABLEDS operation.

TWAIN 1.9 Specification 4-101

Chapter 4

Note: Some Sources may display the Ul even when ShowUl is set to FALSE. An application

can determine whether ShowUI can be set by interrogating the
CAP_UICONTROLLABLE capability. If CAP_UICONTROLLABLE returns FALSE
but the ShowUl input value is set to FALSE in an activation of DG_CONTROL /
DAT_USERINTERFACE /7 MSG_ENABLEDS, the enable DS operation returns
TWRC_CHECKSTATUS but displays the Ul regardless. Therefore, an application that
requires that the Ul be disabled should interrogate CAP_UICONTROLLABLE before
issuing MSG_ENABLEDS.

Modal Versus Modeless User Interfaces

4-102

The Source Manager’s user interface is a modal interface but the Source may provide a
modeless or modal interface. Here are the differences:

Modeless

When a Source uses a modeless user interface, although the Source’s interface is displayed,
the user is still able to access the application by clicking on the application’s window and
making it active.

The user is expected to click on a Close button on the Source’s user interface when they are
ready for that display to go away. The application must NOT automatically close a
modeless Source after the first (or any subsequent) transfer, even if the application is only
interested in receiving a single transfer. If the application closes the Source before the user
requests it, the user is likely to become confused about why the window disappeared. Wait
until the user indicates the desire to close the Source’s window and the Source sends this
request (MSG_CLOSEDSREQ) to the application before closing the Source.

Modal
A Source using a modal user interface prevents the user from accessing other windows.

For Windows only, if the interface is application modal, the user cannot access other
applications but can still access system utilities. If the interface is system modal (which is
rare), the user cannot access anything else at an application or system level. A system
modal dialog might be used to display a serious error message, like a UAE.

If using a modal interface, the Source can perform only one acquire during a session
although there may be multiple frames per acquisition. The Source will send a close
request to the application following the completion of the data transfer. Again, the
application waits to receive this request.

The Source indicates if it is using a modeless or modal interface after the application enables it
using the DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS operation. The data
structure used in the operation (TW_USERINTERFACE) contains a field, ShowUl, which is set
by the application to indicate whether the Source should display its user interface. If the
application requests the user interface be shown, it may also set the ModalUI field to indicate if
it wishes the Source’s GUI to run modal (TRUE) or modeless (FALSE).

When requested by the Source, the application uses the DG_CONTROL /
DAT_USERINTERFACE /7 MSG_DISABLEDS operation to remove the Source’s user interface.

TWAIN 1.9 Specification

Advanced Application Implementation

Grayscale and Color Information for an Image

There are operation triplets in TWAIN that allow the application developer to interact with and
influence the grayscale or color aspect of the images that a Source transfers to the application.
The following operations provide these abilities:

CIE Color Descriptors
DG_IMAGE / DAT_CIECOLOR / MSG_GET

Grayscale Changes

DG_IMAGE / DAT_GRAYRESPONSE /7 MSG_RESET
DG_IMAGE /7 DAT_GRAYRESPONSE / MSG_SET

Palette Color Data

DG_IMAGE / DAT_PALETTE8 /7 MSG_GET
DG_IMAGE /7 DAT_PALETTE8 / MSG_GETDEFAULT
DG_IMAGE / DAT_PALETTE8 / MSG_RESET
DG_IMAGE /7 DAT_PALETTE8 / MSG_SET

RGB Response Curve Data

DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET
DG_IMAGE /7 DAT_RGBRESPONSE / MSG_RESET

CIE Color Descriptors

The CIE XYZ approach is a method for storing color data which simplifies doing mathematical
manipulations on the data. (The topic of CIE XYZ color space is discussed thoroughly in
Appendix A.)

If your application wishes to receive the image data in this format:

1. You must ensure that the Source is able to provide data in CIE XYZ format. To check
this, use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation and get
information on the ICAP_PIXELTYPE. If TWPT_CIEXYZ is returned as one of the
supported types, the Source can provide data in CIE XYZ format.

2. After verifying that the Source supports it, the application can specify that data
transfers should use the CIE XYZ format by invoking a DG_CONTROL /
DAT_CAPABILITY /7 MSG_SET operation on the ICAP_PIXELTYPE. Use a
TW_ONEVALUE container whose value is TWPT_CIEXYZ.

To determine the parameters that were used by the Source in converting the color data into the
CIE XYZ format, use the DG_IMAGE / DAT_CIECOLOR / MSG_GET operation following the
transfer of the image.

TWAIN 1.9 Specification 4-103

Chapter 4

4-104

Grayscale Changes

Palette

(The grayscale operations assume that the application has instructed the Source to provide
grayscale data by setting its ICAP_PIXELTYPE to TWPT_GRAY and the Source is capable of
this.)

The application can request that the Source apply a transfer curve to its grayscale data prior to
transferring the data to the application. To do this, the application uses the DG_IMAGE /
DAT_GRAYRESPONSE / MSG_SET operation. The desired transfer curve information is
placed by the application within the TW_GRAYRESPONSE structure (the actual array is of
type TW_ELEMENTS). The application must be certain to check the Return Code following
this request. If the Return Code is TWRC_FAILURE and the Condition Code shows
TWCC_BADPROTOCOL, this indicates the Source does not support grayscale response curves
(despite supporting grayscale data).

If the Source allows the application to set the grayscale transfer curve, there must be a way to
reset the curve to its original non-altered value. Therefore, the Source must have an “identity
response curve” which does not alter grayscale data but transfers it exactly as acquired. When
the application sends the DG_IMAGE / DAT_GRAYRESPONSE / MSG_RESET operation, the
Source resets the grayscale response curve to its identity response curve.

Color Data

(The palette8 operations assume that the application has instructed the Source to use the
TWPT_PALETTE type for its ICAP_PIXELTYPE and that the Source has accepted this.)

The DAT_PALETTES operations allow the application to inquire about a Source’s support for
palette color data and to set up a palette color transfer. The operations are specialized for 8-bit
data, whether grayscale or color (8-bit or 24-bit). The MSG_GET operation allows the
application to learn what palette was used by the Source during the image acquisition. The
application should always execute this operation immediately after an image transfer rather
than before because the Source may optimize the palette during the acquisition process. Some
Sources may allow an application to define the palette to be used during image acquisition via
the MSG_SET operation. Be sure to check the Return Code to verify that it is TWRC_SUCCESS
following a MSG_SET operation. That is the only way to be certain that your requested palette
will actually be used during subsequent palette transfers.

TWAIN 1.9 Specification

Advanced Application Implementation

RGB Response Curve Data

(The RGB Response curve operations assume that the application has instructed the Source to
provide RGB data by setting its ICAP_PIXELTYPE to TWPT_RGB and the Source is capable of
this.)

The application can request that the Source apply a transfer curve to its RGB data prior to
transferring the data to the application. To do this, the application uses the DG_IMAGE /
DAT_RGBRESPONSE / MSG_SET operation. The desired transfer curve information is placed
by the application within the TW_RGBRESPONSE structure (the actual array is of type
TW_ELEMENTS). The application must be certain to check the Return Code following this
request. If the Return Code is TWRC_FAILURE and the Condition Code shows
TWCC_BADPROTOCOL, this indicates the Source does not support RGB response curves
(despite supporting RGB data).

If the Source allows the application to set the RGB response curve, there must be a way to reset
the curve to its original non-altered value. Therefore, the Source must have an “identity
response curve” which does not alter RGB data but transfers it exactly as acquired. When the
application sends the DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET operation, the
Source resets the RGB response curve to its identity response curve.

Contrast, Brightness, and Shadow Values

There is considerable confusion about what is the appropriate way to present these actual
features for a particular device. Anyone who has attempted to support these capabilities
knows that the recommended ranges do not accurately reflect the capabilities of real world
devices. Data source developers have tried many different methods of getting the correct
response for their data source, and not all are consistent.

By providing a meaningful step size, or by providing a different container, a data source can
provide the application with enough information to accurately model the actual ability of the
device. For an application that wishes to present a custom User Interface for this type of
capability, it is not really useful to the user if it provides 2000 steps from -1000 to +1000,
especially if the device really only supports a small number of levels.

Since both data source developers and application developers read the same specification, it
can be assumed that it is not acceptable to provide values that do not fit within the documented
ranges for these types of capabilities.

The following suggestion is an example of how to follow the specification, and provide the
most accurate values for the particular data source.

TWAIN 1.9 Specification 4-105

Chapter 4

Example 1: ICAP_BRIGHTNESS Supporting Only Three Levels

The specification requirement stated in Chapter 9 is as follows:

“Source should normalize the values into the range. Make sure that a ‘0" value is available as the
Current Value when the Source starts up. If the Source’s + range is asymmetric about the ‘0’ value,
set range maxima to +1000 and scale homogeneously from the ‘0" value in each direction. This will
yield a positive range whose step size differs from the negative range’s step size.”

Note: It should be expanded in this statement that for a step size that differs in the negative
and positive range, a TW_ENUMERATION container must be used. A TW_RANGE
container is not suitable for representing a non-linear step size).

Assume the actual device simply supports the options normal, lighten, and darken. These can
fit into the constraints by mapping actual values to required values:

Normal =0
Lighten =-1000
Darken = 1000

These values can be placed in a TW_RANGE container with a step size of 1000, or into a
TW_ENUMERATION containing only the 3 values. { -1000, 0, 1000 }, the current and default
values are 0.

4-106 TWAIN 1.9 Specification

Source Implementation

Companies that produce image-acquisition devices, and wish to gain the benefits of being
TWAIN-compliant, must develop TWAIN-compliant Source software to drive their device.
The Source software is the interface between TWAIN's Source Manager and the company’s
physical (or logical) device. To write effective Source software, the developer must be familiar
with the application’s expectations as discussed in the other chapters of this document. This
chapter discusses:

Chapter Contents

The Structure of a Source 108
Operation Triplets 110
Sources and the Event Loop 111
User Interface Guidelines 114
Capability Negotiation 116
Data Transfers 117
Error Handling 120
Memory Management 122
Requirements to be a TWAIN-Compliant Source 124
Other Topics 126

TWAIN 1.9 Specification 5-107

Chapter 5

The Structure of a Source

The following sections describe the structure of a source.

On Windows

Implementation

The Source is implemented as a Dynamic Link Library (DLL). Sources should link to
TWAIN.LIB at link time. The Source will not run stand-alone. The DLL typically runs within
the (first) calling application’s heap although DLLs may be able to allocate their own heap and
stack space. There is only one copy of the DLL’s code and data loaded at run-time, even if
more than one application accesses the Source. For more information regarding DLLs on
Win32s, Windows95, and Windows NT please refer to Microsoft documents.

Naming and Location

The DLL’s file name must end with a .DS extension. The Source Manager recursively searches
for your Source in the TWAIN sub-directory of the Windows directory (typically
CAWINDOWS on Windows 95/98, or C:\WINNT on Windows NT). To reduce the chance for
naming collisions, each Source should create a sub-directory beneath TWAIN, giving it a name
relevant to their product. The Source DLLs are placed there. Supporting files may be placed
there as well, but since this is a system directory which may only be modifiable by the System
Administrator, Sources must not write any information into this directory after the installation.

Entry Points and Segment Attributes

Every Source is required to have a single entry point called DS_Entry (see Chapter 6). For 16-
bit sources only, in order to speed up the Source Manager’s ability to identify Sources, the
Source entry point DS_Entry() and the code to respond to the DG_CONTROL /
DAT_IDENTITY / MSG_GET operation must reside in a ssgment marked as PRELOAD. All
other segments should be marked as LOADONCALL (with the exception of any interrupt
handler that may exist in the Source which needs to be in a FIXED code segment).

Resources

* Version Information - The Microsoft VER.DLL is included with the TWAIN toolkit for
use by your installation program, if you have one, to validate the version of the currently
installed Source Manager. Sources should be marked with the Version information
capability defined in Microsoft Windows 3.1. To do this, you can use the resource
compiler from the version 3.1 SDK. VER.DLL and the version stamping are also
compatible with Microsoft Windows version 3.0.

* lcon Id - Future versions of the TWAIN Source Manager may display the list of available
Sources using a combination of the ProductName (in the Source’s TW_IDENTITY
structure) and an Icon (as the Macintosh version currently does). Therefore, it is
recommended that you add this icon into your Source resource file today. This will
allow your Source to be immediately compatible with any upcoming changes. The icon
should be identified using TWON_ICONID from the TWAIN.H file.

5-108 TWAIN 1.9 Specification

Source Implementation

General Notes

» GlobalNotify - Microsoft Windows allows only one GlobalNotify handler per task. As
the Source resides in the application heap, the Source should not use the
GMEM_NOTIFY flag on the memory blocks allocated as this may disrupt the correct
behavior of the application that uses GlobalNotify.

» Windows Exit Procedure (WEP) - During the WEP, the Source is being unloaded by
Microsoft Windows. The Source should make sure all the resources it allocated and
owns get released whether or not the Source was terminated properly.

On Macintosh

Implementation

A Source on a Macintosh is implemented as a Shared Library. The Source will not run stand-
alone. A separate copy of the Source’s code will be made for each application that opens the
Source. Macintosh development books such as Inside Macintosh describe the special
requirements for developing Shared Libraries.

The resource fork of a Data Source is always opened Read Only by the Source Manager. Data
Sources cannot store run-time data in their resource forks. Preference files should be used for
this purpose.

Naming and Location

The type for a Source is DSrc. Note that this is different than previous versions of the Source
Manager. The Source Manager will recursively search for files of this type in the TWAIN Data
Sources folder, which is located in the Extensions folder of the current System Folder.

It is recommended that each Source file, along with any other files it may require, be installed
into a uniquely named folder within the TWAIN Data Sources folder. Placing your files within
a specially named folder will limit the chances of name collisions of the Source’s support files
(or the Source itself) with the names of other Sources and Source-support files already installed.
The Source Manager will recursively search out all Sources within the TWAIN Data Sources
folder.

Compatibility with Older Data Sources

The version 1.8 Source Manager maintains full compatibility with older resource based data
sources. It is recommended that all Data Source vendors update their data sources, as the level
of compatibility will be reduced in the future as new versions of the Macintosh OS are released.

TWAIN 1.9 Specification 5-109

Chapter 5

Operation Triplets

In Chapter 3, we introduced all of the triplets that an application can send to the Source
Manager or ultimately to a Source. There are several other triplet operations which do not
originate from the application. Instead, they originate from the Source Manager or Source and
are introduced in this chapter. All defined operation triplets are listed in detail in Chapter 7.

Triplets from the Source Manager to the Source

There are three operation triplets that are originated by the Source Manager. They are:

DG_CONTROL / DAT_IDENTITY
MSG_GET Returns the Source’s identity structure
MSG_OPENDS Opens and initializes the Source
MSG_CLOSEDS Closes and unloads the Source

The DG_CONTROL / DAT_IDENTITY / MSG_GET operation is used by the Source Manager
to identify available Sources. It may send this operation to the Source at any time and the
Source must be prepared to respond informatively to it. That means, the Source must be able
to return its identity structure before being opened by the Source Manager (with the
MSG_OPENDS command). The Source’s initially loaded code segment must be able to
perform this function without loading any additional code segments. This allows quick
identification of all available Sources and is the only operation a Source must support before it
is formally opened.

The TW_IDENTITY structure looks like this:
typedef struct {

TW Ul NT32 I d;

TW _VERSI ON Ver si on;

TW_ Ul NT16 Pr ot ocol Maj or;
TW_ Ul NT16 Pr ot ocol M nor;
TW_UI NT32 Support edG oups;
TW STR32 Manuf act urer;

TW STR32 Pr oduct Fami | y;
TW STR32 Pr oduct Nane;

} TWIDENTITY, FAR *pTW | DENTI TY;

The ProductName field in the Source’s TW_IDENTITY structure should uniquely identify the
Source. This string will be placed in the Source Manager’s Select Source... dialog for the user.
(The file name of the Source should also approximate the ProductName, if possible, to add
clarity for the user at installation time.) Fill in all fields except the Id field which will be
assigned by the Source Manager. The unique Id number that identifies your Source during its
current session will be passed to your Source when it is opened by the MSG_OPENDS
operation. Sources on Windows must save this TW_IDENTITY.Id information for use when
sending notifications from the Source to the application.

5-110 TWAIN 1.9 Specification

Source Implementation

Sources and the Event Loop

Handling Events

On both Windows and Macintosh, when a Source is enabled (i.e. States 5, 6, and 7), the
application must pass all events (messages) to the Source. Since the Source runs subservient to
the application, this ensures that the Source will receive all events for its window. The event
will be passed in the TW_EVENT data structure that is referenced by a DG_CONTROL /
DAT_EVENT / MSG_PROCESSEVENT command.

Note: Starting with TWAIN 1.8, it is now possible for events to be managed in State 4 only to
support CAP_DEVICEEVENTS. This is a fundamental change from previous TWAIN
behavior that has been added to allow the Source to notify the Application of
important changes in the state of the Source even while in State 4. Note also that the
default value for CAP_DEVICEEVENTS (if supported) must be an empty
TW_ARRAY, indicating the event reporting is turned off. This is essential to allow
backward compatibility with pre-1.8 Applications.

Routing all messages to all connected Sources while they are enabled places a burden on the
application and creates a potential performance bottleneck. Therefore, the Source must process
the incoming events as quickly as possible. The Source should examine each incoming
operation before doing anything else. Only one operation’s message field says
MSG_PROCESSEVENT so always look at the message field first. If it indicates
MSG_PROCESSEVENT then:

Immediately determine if the event belongs to the Source.

If it does
Set the Return Code for the operation to TWRC_DSEVENT
Set the TWMessage field to MSG_NULL
Process the event

Else

Set the Return Code to TWRC_NOTDSEVENT
Set the TWMessage field to MSG_NULL
Return to the application immediately

If the Source developer fails to process events with this high priority, the user may see
degraded performance whenever the Source is frontmost which reflects poorly on the Source.

TWAIN 1.9 Specification 5-111

Chapter 5

On Windows, the code fragment looks like the following:
TW Ul NT16 CALLBACK DS_Entry(pTW.I DENTI TY pSrc,
TW Ul NT32 DG,
TW Ul NT16 DAT,
TW Ul NT16 MSG,
TW MENMREF pDat a)

TWEG t wVBg;
TW U NT16 twRc;
//Valid states 5 — 7 (or 4 — 7 if CAP_DEVI CEEVENTS has been
/'l negotiated to anything other than its default value of an enpty
/1 TWARRAY). As soon as the application has enabl ed the
/1 Source it must being sending the Source events. This allows the
/1 Source to receive events to update its user interface and to
/1 return nessages to the application. The app sends down ALL
/1 message, the Source decides which ones apply to it.
if (MSG == MBG_PROCESSEVENT)

{
if (hlmageD g && | sDi al ogMessage(hl nageD g,
(LPMSG) (((pTW_EVENT) pDat a) - >pEvent)))

{
twRc = TWRC_DSEVENT;

/1 The source should, for proper form return a MSG NULL for
/1 all Wndows nmessages processed by the Data Source
((pTW_EVENT) pDat a) - >TWVessage = MSG_NULL;

}

el se

{

/1 notify the application that the source did not
/1 consunme this nessage
twRc = TWRC_NOTDSEVENT;
((pTW_EVENT) pDat a) - >TWVessage = MSG_NULL;
}
}
el se
{
/1 This is a Twai n message, process accordingly.
/1 The remainder of the Source’s code follows...
}
return twRc;

}

The Windows IsDialogMessage() call is used in this example. Sources can also use other
Windows calls such as TranslateAccelerator() and TranslateMDISYSAccel().

5-112 TWAIN 1.9 Specification

Source Implementation

Communicating to the Application

As explained in Chapter 3, there are four instances where the Source must originate and
transmit a notice to the application:

* When it has data ready to transfer (MSG_XFERREADY)

The Source must send this message when the user clicks the “GO” button on the Source’s
user interface or when the application sends a DG_CONTROL /
DAT_USERINTERFACE /7 MSG_ENABLEDS operation with ShowUI = FALSE. The
Source will transition from State 5 to State 6. The application should now perform their
inquiries regarding TW_IMAGEINFO and capabilities. Then, the application issues a
DG_IMAGE / DAT_IMAGExxxxXFER / MSG_GET operation to begin the transfer
process. Typically, though it is not required, it is at this time that a flatbed scanner (for
example) will begin simultaneously to acquire and transfer the data using the specified
transfer mode.

* When it needs to have its user interface disabled (MSG_CLOSEDSREQ)

Typically, the Source will send this only when the user clicks on the “CLOSE” button on
the Source’s user interface or when an error occurs which is serious enough to require
terminating the session with the application. The Source should be in (or transition to)
State 5. The application should respond by sending a DG_CONTROL /
DAT_USERINTERFACE /7 MSG_DISABLEDS operation to transition the session back to
State 4.

* When the user has pressed the OK button in a Source’s dialog that was brought up
with DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY
(MSG_CLOSEDSOK).

Applications should use this event as the indicator that the user has set all the desired
attributes from the Source’s GUI.

« When the Source needs to report a Device Event. Note that the application must
explicitly request the Source to supply Device Events (MSG_DEVICEEVENT). Sources
must only provide those Device Events requested by a Source through the
CAP_DEVICEEVENT capability. The default for this capability when the Source starts
up is an empty TW_ARRAY, indicating that no Device Events are being reported.
Applications that turn on Device Events must issue a DG_CONTROL /
DAT_DEVICEEVENT / MSG_GET command as soon as possible after receiving a
Device Event.

These notices are sent differently on Windows versus Macintosh systems.

On Windows

The Source creates a call to DSM_Entry (the entry point in the Source Manager) and
fills the destination with the TW_IDENTITY structure of the application. The Source
uses one of the following triplets:

DG_CONTROL / DAT_NULL / MSG_XFERREADY

DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ

The Source Manager, on Windows, recognizes the notice and makes sure the message
is received correctly by the application.

TWAIN 1.9 Specification 5-113

Chapter 5

On Macintosh

The Source on Macintosh does not use the operations described above. Instead, it uses
a TW_EVENT structure to send its notice to the application. The TW_EVENT structure
is created by the application and sent to the Source as data ina DG_CONTROL /
DAT_EVENT / MSG_PROCESSEVENT operation.

Normally, the Source places MSG_NULL in the TW_EVENT.TWMessage field. To
relay the notice, the Source places one of the following in the TWMessage field:
MSG_XFERREADY
MSG_CLOSEDSREQ
MSG_CLOSEDSOK
MSG_DEVICEEVENT
The application examines that field when the DG_CONTROL / DAT_EVENT /

MSG_PROCESSEVENT operation concludes and recognizes these two special notices
from the Source.

User Interface Guidelines

Each TWAIN-compliant Source provides a user interface to assist the user in acquiring data
from their device. Although each device has its own unique needs, the following guidelines are
provided to increase consistency among TWAIN-compliant devices.

Displaying the User Interface

5-114

The application issues DG_CONTROL / DAT_USERINTERFACE /7 MSG_ENABLEDS to
transition the session from State 4 to 5.

The TW_USERINTERFACE data structure contains these fields:

» ShowUl - If set to TRUE, the Source displays its user interface.
If FALSE, the application will be providing its own.

» hParent - Used by Sources on Windows only. It indicates the application’s window
handle. This is to be designated as the Source’s parent for the dialog so it is a proper
child of its parent application.

» ModalUIl - To be set by the Application to TRUE or FALSE.

Sources are not required to allow themselves to be enabled without showing their user interface
(ShowUI = FALSE) but it is strongly recommended that they allow this. If your Source cannot
be used without its user interface, it should enable showing the user interface (just as if

ShowUI = TRUE) and return TWRC_CHECKSTATUS. All Sources, however, must report
whether or not they honor ShowUI set to FALSE via the CAP_UICONTROLLABLE capability.
This allows applications to know whether the Source-supplied user interface can be suppressed
before it is displayed.

When the user interface is disabled (by DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS), a pointer to a TW_USERINTERFACE is included in the pData parameter.

TWAIN 1.9 Specification

Source Implementation

Modal versus Modeless Interfaces

As stated in Chapter 4, the Source’s user interface may be modal or modeless. The modeless
approach gives the user more control and is recommended whenever practical. Refer to the
information following this table for specifics about Windows and Macintosh implementation.

Error and Device Control Indicators

The Source knows what is happening with the device it controls. Therefore, the Source is
responsible for determining when and what information regarding errors and device controls
(ex. “place paper in document feeder”) should be presented to the user. Error information
should be placed by the Source on top of either the application’s or Source’s user interface. Do
not present error messages regarding capability negotiation to the user since this should be
transparent.

Progress Indicators

The Source should display appropriate progress indicators for the user regarding the
acquisition and/or transfer processes. The Source must provide this information regardless of
whether or not its user interface is displayed (ShowUI equals TRUE or FALSE). To suppress
the indicators when the user interface is not displayed, the application should negotiate the
CAP_INDICATORS capability to be FALSE.

Impact of Capability Negotiation

If the Source has agreed to limit the Available Values and/or to set the Current Value, the
interface should reflect the negotiation. However, if a capability has not been negotiated by the
application, the interface should not be modified (don’t gray out a control because it wasn’t
negotiated.)

Advanced Topics

If a Source can acquire from more than one device, the Source should allow the user to choose
which device they wish to acquire from. Provide the user with a selection dialog that is similar
to the one presented by the Source Manager’s Select Source... dialog.

Implementing Modal and Modeless User Interfaces

On Windows

You cannot use the modal dialog creation call DialogBox() to create the Source’s user interface
main window. To allow event processing by both the application and the Source, this call
cannot be used. Modal user interfaces in Source are not inherently bad, however. If a modal
user interface makes sense for your Source, use either the CreateDialog() or CreateWindow()
call.

Modal (App Modal)

It is recommended that the Source’s main user interface window be created with a
modeless mechanism. Source writers can still decide to make their user interface
behave modally if they choose. It is even appropriate for a very simple “click and go”
interface to be implemented this way.

This is done by first specifying the application’s window handle (hwndParent) as the
parent window when creating the Source’s dialog/window and second by

TWAIN 1.9 Specification 5-115

Chapter 5

enabling/disabling the parent window during the MSG_ENABLEDS /
MSG_DISABLEDS operations. Use EnableWindow(hWndParent, FALSE) to disable
the application window and EnableWindow(hWndParent, TRUE) to re-enable it.

Modeless

If implementing a modeless user interface, specify NULL as the parent window handle
when creating the Source’s dialog/window. Also, it is suggested that you call
BringWindowToTop() whenever a second request is made by the same application or
another application requesting access to a Source that supports multiple application
connections.

On Macintosh

It is recommended that the Source’s main user interface window be created with a modeless
mechanism. Source writers can still decide to make their user interface behave modally if they
choose. It is even appropriate for a very simple “click and go” interface to be implemented this
way.

Capability Negotiation

5-116

Capability negotiation is a critical area for a Source because it allows the application to
understand and influence the images that it receives from your Source.

Inquiries From the Application

While the Source is open but not yet enabled (from DG_CONTROL / DAT_IDENTITY /
MSG_OPENDS until DG_CONTROL / DAT_USERINTERFACE /7 MSG_ENABLEDS), the
application can inquire the values of all supported capabilities, and request to set those values.

Once the Source is enabled, the application may only inquire about capabilities. An attempt to
set a capability should fail with TWRC_FAILURE and TWCC_SEQERROR (unless
CAP_EXTENDEDCAPS was negotiated).

Responding to Inquiries

Sources must be able to respond to capability inquiries with current values at any time the
Source is open (i.e. from MSG_OPENDS until MSG_CLOSEDS or before posting a
MSG_CLOSEDSREQ).

A Source should respond with information to any capability that applies to your device. Only
if a capability has no match with your device’s features should you respond with
TWRC_FAILURE / TWCC_BADCAP.

Refer to Chapter 9 for the complete list of TWAIN-defined capabilities.

Responding to Requests to Set Capabilities

If the requested value is invalid or the Source does not support the capability, then return
TWRC_FAILURE / TWCC_CAPUNSUPPORTED. If the requested operation (MSG_SET,
MSG_RESET, etc.) is not supported, then return TWRC_FAILURE /
TWCC_CAPBADOPERATION. If the capability is unavailable because of a dependency on

TWAIN 1.9 Specification

Source Implementation

another capability (i.e., ICAP_CCITTKFACTOR is not available unless ICAP_COMPRESSION
is TWCP_GROUP32D), then return TWCC_CAPSEQERROR. Returning these condition codes
makes it possible for an application using its own Ul to intelligently make dependent
capabilities available or unavailable for user access.

If the request was fulfilled, return TWRC_SUCCESS.

If the requested value is close to an acceptable value but doesn’t match exactly, set it as closely
as possible and then return TWRC_CHECKSTATUS.

Memory Allocation

The TW_CAPABILITY structure used in capability negotiation is both allocated and
deallocated by the application. The Container structure pointed to by the hContainer field in
TW_CAPABILITY is allocated by the Source for “get” operations (MSG_GET,
MSG_GETCURRENT, MSG_GETDEFAULT, MSG_RESET) and by the application for the
MSG_SET operation. Regardless of which one allocates the container, the application is
responsible for deallocating it when it is done with it.

Limitations Imposed by the Negotiation

If a Source agrees to allow an application to restrict a capability, it is critical that the Source
abide by that agreement. If at all possible, the Source’s user interface should reflect the
agreement and not offer invalid options. The Source should never transfer data that violates

the agreement reached during capability negotiation. In that situation, the Source can decide to
fail the transfer or somehow adjust the values.

Data Transfers

Transfer Modes

All Sources must support Native and Buffered Memory data transfers. It is strongly suggested
that they support Disk File mode, too. The default mode is Native. To select one of the other
modes, the application must negotiate the ICAP_XFERMECH capability (whose default is
TWSX_NATIVE). Sources must support negotiation of this capability. The native format for
Microsoft Windows is DIB. For Macintosh, the native format is a PICT. The version of PICT to
be transferred is the latest version available on the machine on which the application is running

(usually PICT Il for machines running 32-bit/color QuickDraw and PICT I for machines
running black and white QuickDraw).

Initiating a Transfer

Transfers are initiated by the application (using the DG_IMAGE / DAT_IMAGEXxxXXFER /
MSG_GET operations). A successful transfer transitions the session to State 7. If the transfer

fails, the Source returns TWRC_FAILURE with the appropriate Condition Code and remains in
State 6.

Concluding a Successful Transfer

To signal that the transfer is complete (i.e. the file is completed or the last buffer filled), the
Source should return TWRC_XFERDONE. In response, the application must send a

TWAIN 1.9 Specification 5-117

Chapter 5

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation. Only then may the
Source transition from State 7 back to State 6 or to State 5 if no more images are ready to be
transferred.

If more images are pending transfer, the Source must wait in State 6 until the application either
requests the transfer or aborts the transfers. The Source may not “time-out” on any TWAIN
transaction.

Aborting a Transfer

Either the application or Source can originate the termination of a transfer (although the
application cannot do this in the middle of a Native or Disk File mode transfer). The Source
generally terminates the transfer if the user cancels the transfer or a device error occurs which
the Source determines is fatal to the transfer or the connection with the application. If the user
canceled the transfer, the Source should return TWRC_CANCEL to signal the premature
termination. The session remains in State 7 until the application sends the DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER operation. If the Source aborts the transfer, it
returns TWRC_FAILURE and the session typically remains in State 6. (If the failure occurs
during the second buffer, or a later buffer, of a Buffered Memory transfer, the session remains
in State 7.)

Native Mode Transfers

5-118

On Native mode transfers, the data parameter in the DSM_Entry call is a pointer to a variable
of type TW_UINT32.

On Windows
The low word of this 32-bit integer is a handle variable to a DIB (Device Independent
Bitmap) located in memory.

On Macintosh

This 32-bit integer is a handle to a Picture (a PicHandle). It is a Quick Draw picture
located in memory.

Native transfers require the data to be transferred to a single large block of RAM. Therefore,
they always face the risk of having an inadequate amount of RAM available to perform the
transfer successfully.

If inadequate memory prevents the transfer, the Source has these options:

 Fail the transfer operation- Return TWRC_FAILURE / TWCC_LOWMEMORY
» Allow the user to clip the data to fit into available memory - Return TWRC_XFERDONE
» Allow the user to cancel the operation - Return TWRC_CANCEL

If the operation fails, the session remains in State 6. If the operation is canceled, the session
remains in State 7 awaiting the DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER or
MSG_RESET from the application. The application can return the session to State 4 and
attempt to renegotiate the transfer mechanism (ICAP_XFERMECH) to Disk File or Buffered
Memory mode.

The Source cannot be interrupted by the application when it is acquiring an image through
Native Mode Transfer. The Source’s user interface may allow the user to abort the transfer, but
the application will not be able to do so even if the application presents its own acquisition user
interface.

TWAIN 1.9 Specification

Source Implementation

Disk File Mode Transfers

The Source selects a default file format and file name (typically, TWAIN.TMP in the current
directory). It reports this information to the application in response to the DG_CONTROL /
DAT_SETUPFILEXFER / MSG_GET or the DG_CONTROL / DAT_SETUPFILEXFER2 /
MSG_GET operation.

The application may determine all of the Source’s supported file formats by using the
ICAP_IMAGEFILEFORMAT capability. Based on this information, the application can request
a particular file format and define its own choice of file name for the transfer. The desired file
format and file name will be communicated to the Source ina DG_CONTROL /
DAT_SETUPFILEXFER / MSG_GET or the DG_CONTROL / DAT_SETUPFILEXFER2 /
MSG_GET operation.

When the Source receives the DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET operation, it
should transfer the data into the designated file. The following conditions may exist;

Condition How to Handle

No file name and/or file format was Use either the Source’s default file name or
specified by the application during setup the last file information given to the Source
by the application. Create the file.

The application specified a file but failed Create the application’s defined file.
to create it

The application’s specified file exists but Overwrite the existing data.
has data in it

The Source cannot be interrupted by the application when it is acquiring a file. The Source’s
user interface may allow the user to abort the transfer, but the application will not be able to do
so even if the application presents its own acquisition user interface.

Buffered Memory Mode Transfers

When the Source transfers strips of data, the application allocates and deallocates buffers used
for a Buffered Memory mode transfer. However, the Source must recommend appropriate
sizes for those buffers and should check that the application has followed its recommendations.

When the Source transfers tiles of data, the Source allocates the buffers. The application is
responsible for deallocating the memory.

To determine the Source’s recommendations for buffer sizes, the application performs a
DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation. The Source fills in the
MinBufSize, MaxBufSize, and Preferred fields to communicate its buffer recommendations.
Buffers must be double-word aligned and padded with zeros per raster line.

When an application issues a DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET operation,
check the TW_IMAGEMEMXFER.Memory.Length field to determine the size of the buffer
being presented to you. If it does not fit the recommendations, fail the operation with
TWRC_FAILURE / TWCC_BADVALUE.

If the buffer is an appropriate size, fill in the required information.

» Sources must write one or more complete lines of image data (the full width of a strip or
tile) into the buffer. Partial lines of image data are not allowed. If some of the buffer is
unused, fill it in with zeros. Additionally, each line must be aligned to a 32-bit boundary.

TWAIN 1.9 Specification 5-119

Chapter 5

Return TWRC_SUCCESS after each successful buffer except for the last one (return
TWRC_XFERDONE after that one).

If the Source is transferring data whose bit depth is not 8 bits, it should fill the buffer
without padding the data. If a 5-bit device wants the application to interpret its data as
8-bit data, it should report that it is supplying 8-bit data, make the valid data bits the
most significant bits in the data byte, and pad the least significant bits with bits of
whichever sense is “lightest”. Otherwise, the Source should pack the data bits together.
For a 5-bit R-G-B device, that means the data for the green channel should immediately
follow the last bit of the red channel. The application is responsible for “unpacking” the
data. The Source reports how many bits it is providing per pixel in the BitsPerPixel field
of the TW_IMAGEINFO data structure.

Error Handling

Operation Triplet and State Verification

5-120

Sources support all defined TWAIN triplets. A Source must verify every operation
triplet they receive. If the operation is not recognized, the Source should return
TWRC_FAILURE and TWCC_BADPROTOCOL.

Sources must also maintain an awareness of what state their session is in. If an
application invokes an operation that is invalid in the current state, the Source should fail
the operation and return TWRC_FAILURE and TWCC_SEQERROR. Valid states for
each operation are listed in Chapter 7.

Anytime a Source fails an operation that would normally cause the session to transition
to another state, the session should not transition but should remain in the original state.

Each triplet operation has its own set of valid Return and Condition Codes as listed in
Chapter 7. The Source must return a valid Return Code and set a valid Condition Code,
if applicable, following every operation.

All Return Codes and Condition Codes in the Source should be cleared upon the next
call to DS_Entry(). Clearing is delayed when a DG_CONTROL / DAT_STATUS /
MSG_GET operation is received. In this case, the Source will fill the TW_STATUS
structure with the current condition information and then clear that information.

If an application attempts to connect to a Source that only supports single connection (or
a multiply-connected Source that can’t establish any new connections), the Source should
respond with TWRC_FAILURE and TWCC_MAXCONNECTIONS.

TWAIN 1.9 Specification

Source Implementation

» For Windows Sources only, the DLL implementation makes it possible to be connected to
more than one application. Unless the operation request is to open the Source, the
Source must verify the application originating an operation is currently connected to the
Source. To do this:

v" The Source must maintain a list containing the Id value for each connected
application. (The Id value comes from the application’s TW_IDENTITY structure
which is referenced by the pOrigin parameter in the DS_Entry() call.)

v" The Source should check the TW_IDENTITY.Id information of the application
sending the operation and verify that it appears in the Source’s list of connected
applications.

» For Windows only, if connected to multiple applications, the Source is responsible for
maintaining a separate, current Condition Code for each application it is connected to.
The Source writer should also maintain a temporary, and separate, Condition Code for
any application that is attempting to establish a connection with the Source. This is true
both for Sources that support only a single connection or have reached the maximum
connections.

Unrecoverable Error Situations

The Source is solely responsible for determining whether an error condition within the Source
is recoverable or not. The Source must determine when, and what, error condition information
to present to the user. The application relies on the Source to specify when a failure occurs. If a
Source is in an unrecoverable error situation, it may send a MSG_CLOSEDSREQ to the
application to request to have its user interface disabled and have an opportunity to begin
again.

DAT_EVENT Handling Errors

One of the most common problems between a data source and application is the management
of DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT. The symptoms are not
immediately obvious, so it is worth mentioning them to assist new developers in quickly
identifying and solving the problem.

Cannot use TAB or Keyboard Shortcuts to Navigate TWAIN Dialog

The cause of this can be one of two things. Either the application is not forwarding all
messages to TWAIN through the DAT_EVENT mechanism, or the data source is not
properly processing the DAT_EVENT messages. (Windows: calling IsDialogMessage
for each forwarded message with TWAIN Dialog handle)

TWAIN Dialog Box Combo Boxes cannot be opened, Edit boxes produce multiple chars
per keystroke

This case is caused by processing TWAIN Dialog Messages twice. Either the data
source has not returned the proper return code in response to DAT_EVENT calls
(Windows: TWRC_DSEVENT when IsDialogMessage returns TRUE), or the
application is ignoring the return code.

TWAIN 1.9 Specification 5-121

Chapter 5

This is not a problem when data source operates through TWAIN Thunker

Problems with the application handling of these messages are not often detected if the
data source is operating through the TWAIN Thunking mechanism. This is because the
Thunker process has a separate Window and Message pump that properly dispatch
DAT_EVENT messages to the data source. Any mistake in application handling will
pass without notice since all DAT_EVENT calls will return TWRC_NOTDSEVENT.
(with the exception of important messages such as MSG_XFERREADY..)

Problem seems erratic, keyboard shortcuts and Tab key work for Message Boxes, but not
TWAIN Dialog

This observation often further confuses the issue. In Windows, a standard Message box
is Modal, and operates from a local message pump until the user closes it. All
messages are properly dispatched to the message box since it does not rely on the
application message pump. The TWAIN Dialog is slightly different since it is
implemented Modeless. There is no easy way to duplicate Modal behavior for the
TWAIN Dialog.

Memory Management

Windows Specifics

On 16-bit Windows systems, a single copy of the Source Manager and Source(s) services all
applications wishing to access TWAIN functionality. If the Source can connect to more than
one application, it will probably need to maintain a separate execution frame for each
connected application. The Source does not have unlimited memory available to it so be
conservative in its use.

On 32-bit Windows systems, a new in-memory copy of the Source Manager and Source(s) is
created in the Application’s calling space. In addition, a call may be made to the Windows On
Windows (WOW) system, to support the thunking mechanism. For more information on the
thunker, refer to Chapter 3 — Installation of the Source Manager.

It is valid for an application to open a Source and leave it open between several acquires.
Therefore, Sources should minimize the time and resources required to load and remain open
(in State 4). Also, Sources should allow a reasonable number of connections to ensure they can
handle more than one application using the Source in this manner (leaving it open between
acquires).

Macintosh Specifics

Each application that loads the Source Manager has a private copy of the Source. Each Source
that is connected also runs as a private copy. It is important for the Source writer to recognize
that their Source will be using the memory heap of the host application, not in its own heap.
Therefore, the Source should be conscientious with allocation and deallocation of memory.

5-122 TWAIN 1.9 Specification

Source Implementation

General Guidelines

The following are some general guidelines:

» Check, when the Source is launched, to assure that enough memory space is available for
adequate execution.

» Always verify that allocations were successful.

» Work with relocatable objects whenever possible - the heap you fragment is not your
own.

» Deallocate temporary memory objects as soon as they are no longer needed.

» Maintain as small a non-operating memory footprint as can prudently be done - the
Source will be “compatible” with more applications on more machines.

» Clean up after yourself. When about to be closed, deallocate all locally allocated RAM,
eliminate any other objects on the heap, and prepare as appropriate to terminate.

Local Variables

The Source may allocate and maintain local variables and buffers. Remember that you are
borrowing RAM from the application so be efficient about how much RAM is allocated
simultaneously.

Instances Where the Source Allocates Memory

In general, the application allocates all necessary structures and passes them to the Source.
There are a few exceptions to this rule:

» The Source must create the container, pointed to by the hContainer field, needed to hold
capability information on DG_CONTROL / DAT_CAPABILITY / MSG_GET,
MSG_GETCURRENT, MSG_GETDEFAULT, or MSG_RESET operations. The
application deallocates the container.

» The Source allocates the buffer for Native mode data transfers. The application
deallocates the buffer.

* Normally, the application creates the buffers used in a Buffered Memory transfer
(DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET). However, if the Source is
transferring tiled data, rather than strips of data, it is responsible for allocating the
buffers. The application deallocates the buffers.

See the DG_IMAGE / DAT_JPEGCOMPRESSION operations.

TWAIN 1.9 Specification 5-123

Chapter 5

Requirements to be a TWAIN-Compliant Source

Requirements
TWAIN-compliant Sources must support the following:

Operations
DG_CONTROL / DAT_CAPABILITY / MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT
DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT
DG_CONTROL / DAT_CAPABILITY /7 MSG_RESET
DG_CONTROL / DAT_CAPABILITY / MSG_SET

DG_CONTROL / DAT_EVENT /7 MSG_PROCESSEVENT

DG_CONTROL / DAT_IDENTITY / MSG_GET
DG_CONTROL / DAT_IDENTITY /7 MSG_OPENDS
DG_CONTROL 7/ DAT_IDENTITY / MSG_CLOSEDS

DG_CONTROL / DAT_PENDINGXFERS /7 MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS /7 MSG_GET
DG_CONTROL / DAT_PENDINGXFERS /7 MSG_RESET

DG_CONTROL / DAT_SETUPMEMXFER /7 MSG_GET
DG_CONTROL / DAT_STATUS /7 MSG_GET

DG_CONTROL / DAT_USERINTERFACE /7 MSG_DISABLEDS
DG_CONTROL / DAT_USERINTERFACE /7 MSG_ENABLEDS
DG_CONTROL / DAT_XFERGROUP / MSG_GET

DG_IMAGE / DAT_IMAGEINFO /7 MSG_GET

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE /7 DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE 7/ DAT_IMAGELAYOUT / MSG_RESET
DG_IMAGE /7 DAT_IMAGELAYOUT / MSG_SET

DG_IMAGE /7 DAT_IMAGEMEMXFER /7 MSG_GET
DG_IMAGE 7 DAT_IMAGENATIVEXFER /7 MSG_GET

5-124 TWAIN 1.9 Specification

Source Implementation

Capabilities
Every Source must support all five DG_CONTROL / DAT_CAPABILITY operations on:
CAP_XFERCOUNT

Every Source must support DG_CONTROL / DAT_CAPABILITY MSG_GET on:

CAP_SUPPORTEDCAPS
CAP_UICONTROLLABLE

Sources that supply image information must support DG_CONTROL /7 DAT_CAPABILITY /
MSG_GET, MSG_GETCURRENT, MSG_GETDEFAULT on:

ICAP_COMPRESSION

ICAP_PLANARCHUNKY
ICAP_PHYSICALHEIGHT
ICAP_PHYSICALWIDTH
ICAP_PIXELFLAVOR

Sources that supply image information must support DG_CONTROL /7 DAT_CAPABILITY /
MSG_GET, MSG_GETCURRENT, MSG_GETDEFAULT, MSG_RESET and MSG_SET on:

ICAP_BITDEPTH
ICAP_BITORDER
ICAP_PIXELTYPE
ICAP_UNITS
ICAP_XFERMECH
ICAP_XRESOLUTION
ICAP_YRESOLUTION

All Sources must implement the advertised features supported by their devices. They must
make these features available to applications via the TWAIN protocol. For example, a Source
that’s connected to a device that has an ADF must support DG_CONTROL /
DAT_CAPABILITY /7 MSG_GET, MSG_GETCURRENT, MSG_GETDEFAULT on:

CAP_FEEDERENABLED
CAP_FEEDERLOADED

and DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT,
MSG_GETDEFAULT, MSG_RESET and MSG_SET on:

CAP_AUTOFEED

If the ADF also supports ejecting and rewinding of pages then the Source should also support
DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT,
MSG_GETDEFAULT, MSG_RESET and MSG_SET on:

CAP_CLEARPAGE
CAP_REWINDPAGE

TWAIN 1.9 Specification 5-125

Chapter 5

On mid and high volume scanners the following are mandatory, beginning with TWAIN 1.9.
These capabilities and operations are required to allow applications to deal with the complexity
and custom features of these high-end devices. Typical use implies a two-step process: a
configuration step, where an administrator creates and selects the session settings (using
MSG_ENABLEDSUIONLY, saving the data using DAT_CUSTOMDSDATA); and a production
step, where an operator selects one of the predefined settings (using DAT_CUSTOMDSDATA,
running the session with TW_USERINTERFACE.ShowUI == FALSE) to drive a scanning
session:

CAP_CUSTOMDSDATA (must be TRUE)

CAP_ENABLEDSUIONLY (must be TRUE)

CAP_UICONTROLLABLE (must be TRUE)

DG_CONTROL / DAT_CUSTOMDSDATA / MSG_GET
DG_CONTROL / DAT_CUSTOMDSDATA / MSG_SET

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY

Other Topics

5-126

Custom Operations

Manufacturers may add custom operations to their Sources. These can also be made known to
application manufacturers. This mechanism allows an application to access functionality not
normally available from a generic TWAIN Source.

One use of this mechanism might be to implement device-specific diagnostics for a hardware
diagnostic program. These custom operations should be used sparingly and never in place of
pre-defined TWAIN operations.

Custom operations are defined by specifying special values for Data Groups (DGs), Data
Argument Types (DATS), Messages (MSGs), and Capabilities (CAPs). The following areas
have been reserved for custom definitions:

Data Groups Top 8 bit flags (bits 24 - 31) in the DG identifiers reserved for custom use.

DATs Designators with values greater than 8000 hex.
Messages Designators with values greater than 8000 hex.
Capabilities Designators with values greater than 8000 hex.

The responsibility for naming and managing the use of custom designators lies wholly upon
the TWAIN element originating the designator and the element consuming it. Prior to
interpreting a custom designator, the consuming element must check the originating element’s
ProductName string from its TW_IDENTITY structure. Since custom operation numbers may
overlap, this is the only way to insure against confusion.

TWAIN 1.9 Specification

Source Implementation

Networking

If a Source supports connection to a remote device over a network, the Source is responsible for
hiding the network dependencies of that device’s operation from the application. The Source
Manager does not know anything about networks.

In a networking situation, the Source will probably be built in two segments: One running on
the machine local to the application, the other running remotely across the network. Sources
are required to handle all the network interfacing with remote devices (real or logical) through
local Source “stubs” that understand how to access both the network and the remote Source
while interacting logically with the Source Manager.

The segment running on the local machine will probably be a “stub” Source. That is, the local
stub will translate all operations received from the application and Source Manager into a form
the remote source understands (that is, not necessarily TWAIN-defined operations). The stub
also:

« Converts the information returned from the remote source into TWAIN-compliant
results

» Handles local memory management for data copies and data transferring

« Isolates the network from the Source Manager and application

* Manages the connection with the remote Source

» Provides any needed code to handle local hardware (such as interface hardware)

» Provides the local user interface to control the remote Source

TWAIN 1.9 Specification 5-127

Chapter 5

5-128 TWAIN 1.9 Specification

Entry Points and
Triplet Components

Chapter Contents

Entry Points 129
Data Groups 132
Data Argument Types 133
Messages 134
Custom Components of Triplets 136

Entry Points

TWAIN has two entry points:

 DSM_Entry() - located in the Source Manager and typically called by applications, with
the following exceptions where a Windows Source calls the Source Manager to
communicate with an Application:

DG_CONTROL / DAT_NULL / MSG_XFERREADY
DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ
DG_CONTROL / DAT_NULL / MSG_CLOSEDSOK
DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT

* DS_Entry() - located in the Source and called only by the Source Manager.

Programming Basics

« Upon entry, the parameters must be ordered on the stack in Pascal form. Be sure that
your code expects this ordering rather than the reverse order that C uses.

» The keyword FAR is included in the entry point syntax to accommodate the 16-bit
Windows segmented addressing scheme. It has no value for any other operating system,
and is defined as an empty value for everything, except 16-bit Windows.

TWAIN 1.9 Specification 6-129

Chapter 6

Declaration of DSM_Entry()

Written in C code form, the declaration looks like this:

On Windows
TW Ul NT16 FAR PASCAL DSM Entry

(pTWIDENTITY pOigin, /1 source of message
PTW.I DENTITY pDest, /1 destination of nessage
TW_ Ul NT32 DG, /1 data group ID: DG xxxx
TW_UI NT16 DAT, /1 data argunment type: DAT_XXXX
TW_ Ul NT16 MSG, /1 message | D: MBG_XxxX
TW MVEMREF pDat a /1 pointer to data

)

On Macintosh

FAR PASCAL TW U NT16 DSM Entry

(pTWIDENTITY pOigin, /1 source of nessage
pTW.I DENTITY pDest, /1 destination of nessage
TW_UI NT32 DG, /1 data group ID DG xXxxx
TW_ Ul NT16 DAT, /1 data argument type: DAT_XXXX
TW_UI NT16 MSG /1 nmessage I D: MBG_XXXxX
TW MEMREF pDat a /1 pointer to data
)

Parameters of DSM_Entry()

6-130

pOrigin

This points to a TW_IDENTITY structure, allocated by the application, that describes
the application making the call. One of the fields in this structure, called Id, is an
arbitrary and unique identifier assigned by the Source Manager to tag the application
as a unique TWAIN entity. The Source Manager maintains a copy of the application’s
identity structure, so the application must not modify that structure unless it first
breaks its connection with the Source Manager, then reconnects to cause the Source
Manager to store the new, modified identity.

pDest

This is set either to NULL if the application is aiming the operation at the Source
Manager or to the TW_IDENTITY structure of the Source that the application is
attempting to reach. The application allocated the space for the Source’s identity
structure when it decided which Source was to be connected. The Source’s
TW_IDENTITY.Id is also uniquely set by the Source Manager when the Source is
opened and should not be modified by the Source. The application should not count
on the value of this field being consistent from one session to the next because the
Source Manager reallocates these numbers every time it is opened. The Source
Manager keeps a copy of the Source’s identity structure as should the application and
the Source.

The Data Group of the operation triplet. Currently, only DG_CONTROL, DG_IMAGE,
and DG_AUDIO are defined.

TWAIN 1.9 Specification

Entry Points and Triplet Components

DAT

The Data Argument Type of the operation triplet. A complete list appears later in this
chapter.

MSG
The Message of the operation triplet. A complete list appears later in this chapter.

pData

The pData parameter is of type TW_MEMREF and is a pointer to the data (a variable
or, more typically, a structure) that will be used according to the action specified by the
operation triplet.

Declaration of DS_Entry()

DS_Entry is only called by the Source Manager. Written in C code form, the declaration looks

like this:
On Windows
TW. U NT16 FAR PASCAL DS Entry

(pTWIDENTITY pOigin, /1 source of message
TW_UI NT32 DG, /1 data group ID DG xXxxx
TW_ Ul NT16 DAT, /1 data argument type: DAT_XXXX
TW_UI NT16 MSG /1 nmessage I D: MBG_XXXX
TW MEMREF pDat a /! pointer to data

)

On Macintosh
FAR PASCAL TW. U NT16 DS Entry

(pTWIDENTITY pOigin, /1 source of message
TW_UI NT32 DG, /1 data group ID: DG xXXxxx
TW_ Ul NT16 DAT, /1 data argument type: DAT_XXXX
TW_UI NT16 MSG /1 nmessage I D: MBG_XXXX
TW MEMREF pDat a /! pointer to data
)

TWAIN 1.9 Specification 6-131

Chapter 6

Data Groups

TWAIN operations can be broadly classified into three data groups:

Control Oriented (DG_CONTROL)

Controls the TWAIN session. Consumed by both Source Manager and Source. It is
always available, no matter what the current setting of DG_CONTROL /
DAT_XFERGROUP.

Image Data Oriented (DG_IMAGE)

Indicates the kind of data to be transferred. Change between DG_AUDIO and
DG_IMAGE as needed using DG_CONTROL / DAT_XFERGROUP / MSG_SET. The
default at startup is for a Source to be ready to transfer DG_IMAGE data.

Audio Data Oriented (DG_AUDIO)

Indicates the kind of data to be transferred. Change between DG_AUDIO and
DG_IMAGE as needed using DG_CONTROL / DAT_XFERGROUP / MSG_SET.

Currently, only image and audio data are supported but this could be expanded to include text,
etc. This has several future implications. If more than one data type exists, an application and
a Source will need to decide what type(s) of data the Source can, and will be allowed to,
produce before a transfer can occur. Further, if multiple transfers are being generated from a
single acquisition—such as when image and text are intermixed and captured from the same
page—it must be unambiguous which type of data is being returned from each data transfer.

Programming Basics
Note the following:

» Data Group designators are 32-bit, unsigned values. The actual values that are assigned
are powers of two (bit flags) so that the DGs can be easily masked.

» There are 24 DGs designated as “reserved” for pre-defined DGs . Four are currently in
use. The top 8 bits are reserved for custom DGs.

6-132 TWAIN 1.9 Specification

Entry Points and Triplet Components

Data Argument Types

Data Argument Types, or DATS, are used to allow programmatic identification of the TWAIN
type for the structure of status variable referenced by the entry point parameter pData. pData
will always point to a variable or data structure defined by TWAIN. If the consuming
application or Source switches (cases, etc.) on the DAT specified in the formal parameter list of
the entry point call, it can handle the form of the referenced data correctly.

Data Type
DAT_NULL

DAT_CUSTOMBASE

DAT_AUDIOFILEXFER

DAT_AUDIONATIVEXFER

DAT_CAPABILITY
DAT_EVENT
DAT_FILESYSTEM
DAT_IDENTITY

DAT_PARENT

DAT_PASSTHRU
DAT_PENDINGXFERS
DAT_SETUPFILEXFER
DAT_SETUPFILEXFER2
DAT_SETUPMEMXFER
DAT_STATUS
DAT_USERINTERFACE
DAT_XFERGROUP

DAT_CIECOLOR
DAT_GRAYRESPONSE

TWAIN 1.9 Specification

Table 6-1. Data Argument Types

Used by
ANY DG

n/a

DG_AUDIO

DG_AUDIO

DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL

DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL

DG_IMAGE
DG_IMAGE

Associated structure or type
Null structure. No data required for the operation

Not a DAT in itself, but the baseline a Source must
use when creating a custom DAT.

Operates on null data. Filename / Format already
negotiated.

TW_UINT32

On Windows - low word = WAV handle
On Macintosh - audio handle
TW_CAPABILITY structure
TW_EVENT structure
TW_FILESYSTEM structure
TW_IDENTITY structure

TW_INT32

On Windows - low word=Window handle
On Macintosh - Set to NULL
TW_PASSTHRU structure
TW_PENDINGXFERS structure
TW_SETUPFILEXFER structure
TW_SETUPFILEXFER2 structure
TW_SETUPMEMXFER structure
TW_STATUS structure
TW_USERINTERFACE structure
TW_UINT32

A DG designator describing data to be transferred
(currently only image data is supported)

TW_CIECOLOR structure

TW_GRAYRESPONSE structure

6-133

Chapter 6

DAT_IMAGEFILEXFER

DAT_IMAGEINFO
DAT_IMAGELAYOUT
DAT_IMAGEMEMXFER

DAT_IMAGENATIVEXFER

DAT_JPEGCOMPRESSION
DAT_PALETTES

DAT_RGBRESPONSE

DG_IMAGE

DG_IMAGE
DG_IMAGE
DG_IMAGE

DG_IMAGE

DG_IMAGE
DG_IMAGE

DG_IMAGE

Operates on NULL data. Filename/Format
already negotiated

TW_IMAGEINFO structure
TW_IMAGELAYOUT structure
TW_IMAGEMEMXFER structure
TW_UINT32;

On Windows - low word=DIB handle
On Macintosh - PicHandle
TW_JPEGCOMPRESSION structure
TW_PALETTES structure

TW_RGBRESPONSE structure

Messages

A Message, or MSG, is used to communicate between TWAIN elements what action is to be
taken upon a particular piece of data, or for a data-less operation, what action to perform. If an
application wants to make anything happen in, or inquire any information from, a Source or the
Source Manager, it must make a call to DSM_Entry(') with the proper MSG as one parameter of
the operation triplet. The data to be acted upon is also specified in the parameter list of this

call.

A MSG is always associated with a Data Group (DG) identifier and a Data Argument Type
(DAT) identifier in an operation triplet. This operation unambiguously specifies what action is
to be taken on what data. Refer to Chapter 7 for the list of defined operation triplets.

Message ID

MSG_AUTOMATICCAPTURE
DIRECTORY

MSG_CHANGEDIRECTORY

MSG_CLOSEDS
MSG_CLOSEDSM
MSG_CLOSEDSREQ

6-134

Table 6-2. Messages

Valid DAT(s)
DAT_FILESYSTEM

DAT_FILESYSTEM

DAT_IDENTITY
DAT_PARENT
DAT_NULL

Description of Specified Action

Place to store images acquired during automatic
capture

Change device, domain, host, or image
directory

Close the specified Source
Close the Source Manager
Source requests for application to close Source

TWAIN 1.9 Specification

MSG_COPY

MSG_CREATEDIRECTORY

MSG_CUSTOMBASE

MSG_DELETE
MSG_DEVICEEVENT

MSG_DISABLEDS
MSG_ENABLEDS
MSG_ENDXFER
MSG_FORMATMEDIA
MSG_GET

MSG_GETCLOSE

MSG_GETCURRENT
MSG_GETDEFAULT
MSG_GETFIRST
MSG_GETFIRSTFILE
MSG_GETINFO
MSG_GETNEXT
MSG_GETNEXTFILE
MSG_NULL
MSG_OPENDS
MSG_OPENDSM
MSG_PASSTHRU
MSG_PROCESSEVENT

MSG_RENAME
MSG_RESET

MSG_SET
MSG_USERSELECT
MSG_XFERREADY

TWAIN 1.9 Specification

DAT_FILESYSTEM
DAT_FILESYSTEM
n/a

DAT_FILESYSTEM
DAT_NULL

DAT_USERINTERFACE
DAT_USERINTERFACE
DAT_PENDINGXFERS
DAT_FILESYSTEM
various DATs

DAT_FILESYSTEM

various DATs
various DATSs
DAT_IDENTITY
DAT_FILESYSTEM
DAT_FILESYSTEM
DAT_IDENTITY
DAT_FILESYSTEM
None
DAT_IDENTITY
DAT_PARENT
DAT_PASSTHRU
DAT_EVENT

DAT_FILESYSTEM
various DATSs

various DATSs
DAT_IDENTITY
DAT_NULL

Entry Points and Triplet Components

Copy images across storage devices
Create an image directory

Not a message in itself, but the baseline a
Source must use when creating a custom
message

Delete an image or an image directory

Report an event from the Source to the Source
Manager

Disable data transfer in the Source

Enable data transfer in the Source
Application tells Source that transfer is over
Format a storage device

Get all Available Values including Current &
Default

Close a file context created by
MSG_GETFIRSTFILE

Get Current value

Get Source’s preferred default value
Get first element from a “list”

Get the first file in a directory

Get information about the current file
Get next element from a “list”

Get the next file in a directory

No action to be taken

Open and Initialize the specified Source
Open the Source Manager

For use by Source Vendors only

Tells Source to check if event/message belongs
to it
Rename an image or an image directory

Return specified item to power-on (TWAIN
default) condition

Set one or more values
Presents dialog of all Sources to select from

The Source has data ready for transfer to the
application

6-135

Chapter 6

Custom Components of Triplets

Custom Data Groups

A manufacturer may choose to implement custom data descriptors that require a new Data
Group. This would be needed if someone decides to extend TWAIN to, say, satellite telemetry.

» The top 8 bits of every DG_xxxx identifier are reserved for use as custom DGs. Custom
DG identifiers must use one of the upper 8 bits of the DG_xxxx identifier. Remember,
DGs are bit flags.

» The originator of the custom DG must fill the ProductName field in the application or
Source’s TW_IDENTITY structure with a uniquely descriptive name. The consumer will
look at this field to determine whose custom DG is being used.

» TWAIN provides no formal allocation (or vendor-specific “identifier blocks™) for custom
data group identifiers nor does it do any coordination to avoid collisions.

 The DG_CUSTOMBASE value resides in the TWAIN.H file. All custom IDs must be
numerically greater than this base. A similar custom base “address” is defined for Data
Argument Types, Messages, Capabilities, Return Codes, and Condition Codes. The only
difference in concept is that DGs are the only designators defined as bit flags. All other
custom values can be any integer value larger than the xxxx_CUSTOMBASE defined for
that type of designator.

Custom Data Argument Types

DAT_CUSTOMBASE is defined in the TWAIN.H file to allow a Source vendor to define
“custom” DATSs for their particular device(s). The application can recognize the Source by
checking the TW_IDENTITY.ProductName and the TW_IDENTITY.TW_VERSION structure.
If an application is aware that this particular Source offers custom DATS, it can use them. No
changes to TWAIN or the Source Manager are required to support such identifiers (or the data
structures which they imply).

Refer to the TWAIN.H file for the value of DAT_CUSTOMBASE for custom DATs. All custom
values must be numerically greater than this constant.

Custom Messages

As with the DATs, MSG_CUSTOMBASE is included in TWAIN.H so that the Source writer can
create custom messages specific to their Source. If the applications understand these custom
messages, actions beyond those defined in this specification can be performed through the
normal TWAIN mechanism. No modifications to TWAIN or the Source Manager are required.

Remember that the consumer of these custom values will look in your
TW_IDENTITY.ProductName field to clarify what the identifier’s value means—there is no
other protection for overlapping custom definitions. Refer to the TWAIN.H file for the value of
MSG_CUSTOMBASE for custom Messages. All custom values must be numerically greater
than this value.

6-136 TWAIN 1.9 Specification

Operation Triplets

Chapter Contents

An Overview of the Triplets 137
Format of the Operation Triplet Descriptions 141
Operation Triplets 142

An Overview of the Triplets

From Application to Source Manager (Control Information)

Data Group Data Argument Type
DG_CONTROL DAT_IDENTITY
DG_CONTROL DAT_PARENT
DG_CONTROL DAT_STATUS

TWAIN 1.9 Specification

Message

MSG_CLOSEDS
MSG_GETDEFAULT
MSG_GETFIRST
MSG_GETNEXT
MSG_OPENDS
MSG_USERSELECT
MSG_CLOSEDSM
MSG_OPENDSM
MSG_GET

Page #

7-176
7-179
7-180
7-182
7-184
7-188
7-195
7-196
7-219

7-137

Chapter 7

From Application to Source (Control Information)

Data Group
DG_CONTROL

DG_CONTROL

DG_CONTROL

DG_CONTROL
DG_CONTROL
DG_CONTROL

DG_CONTROL

DG_CONTROL

DG_CONTROL

7-138

Data Argument Type
DAT_CAPABILITY

DAT_CUSTOMDSDATA

DAT_FILESYSTEM

DAT_EVENT
DAT_PASSTHRU
DAT_PENDINGXFERS

DAT_SETUPFILEXFER

DAT_SETUPFILEXFER2

DAT_SETUPMEMXFER

Message

MSG_GET
MSG_GETCURRENT
MSG_GETDEFAULT
MSG_QUERYSUPPORT
MSG_RESET

MSG_SET

MSG_GET

MSG_SET

MSG_AUTOMATICCAPTURE

DIRECTORY

MSG_CHANGEDIRECTORY

MSG_COPY

MSG_CREATEDIRECTORY

MSG_DELETE
MSG_FORMATMEDIA
MSG_GETCLOSE
MSG_GETFIRSTFILE
MSG_GETINFO
MSG_GETNEXTFILE
MSG_RENAME
MSG_PROCESSEVENT
MSG_PASSTHRU
MSG_ENDXFER
MSG_GET
MSG_RESET
MSG_STOPFEEDER
MSG_GET
MSG_GETDEFAULT
MSG_RESET

MSG_SET

MSG_GET
MSG_GETDEFAULT
MSG_RESET

MSG_SET

MSG_GET

TWAIN 1.9 Specification

Page #
7-145
7-147
7-149
7-151
7-153
7-155
7-159
7-160
7-164
7-165
7-167
7-168
7-169
7-170
7-171
7-172
7-173
7-174
7-175

7-162
7-197
7-198
7-200
7-202
7-204
7-205
7-206
7-207
7-208
7-210
7-212
7-214
7-216
7-218

Operation Triplets

DG_CONTROL DAT_STATUS MSG_GET 7-219
DG_CONTROL DAT_USERINTERFACE MSG_DISABLEDS 7-221
MSG_ENABLEDS 7-222
MSG_ENABLEDSUIONLY 7-225
DG_CONTROL DAT_XFERGROUP MSG_GET 7-226
MSG_SET 7-227

From Application to Source (Image Information)

Data Group Data Argument Type Message Page #
DG_IMAGE DAT_CIECOLOR MSG_GET 7-228
DG_IMAGE DAT_EXTIMAGEINFO MSG_GET 7-230
DG_IMAGE DAT_GRAYRESPONSE MSG_RESET 7-232
MSG_SET 7-233
DG_IMAGE DAT_IMAGEFILEXFER MSG_GET 7-234
DG_IMAGE DAT_IMAGEINFO MSG_GET 7-236
DG_IMAGE DAT_IMAGELAYOUT MSG_GET 7-238
MSG_GETDEFAULT 7-240
MSG_RESET 7-241
MSG_SET 7-242
DG_IMAGE DAT_IMAGEMEMXFER MSG_GET 7-244
DG_IMAGE DAT_IMAGENATIVEXFER MSG_GET 7-246
DG_IMAGE DAT_JPEGCOMPRESSION MSG_GET 7-249
MSG_GETDEFAULT 7-250
MSG_RESET 7-251
MSG_SET 7-252
DG_IMAGE DAT_PALETTES MSG_GET 7-253
MSG_GETDEFAULT 7-255
MSG_RESET 7-256
MSG_SET 7-257
DG_IMAGE DAT_RGBRESPONSE MSG_RESET 7-258
MSG_SET 7-259

From Application to Source (Audio Information)

Data Group Data Argument Type Message Page #
DG_AUDIO DAT_AUDIOFILEXFER MSG_GET 7-142
DG_AUDIO DAT_AUDIOINFO MSG_GET 7-143
DG_AUDIO DAT_AUDIONATIVEXFER MSG_GET 7-144

TWAIN 1.9 Specification 7-139

Chapter 7

From Source Manager to Source (Control Information)

Data Group Data Argument Type Message Page #

DG_CONTROL DAT_IDENTITY MSG_CLOSEDS 7-176
MSG_GET 7-178
MSG_OPENDS 7-186

From Source to Application (Control Information via the Source Manager)
(Used by Windows Sources only)

Data Group Data Argument Type Message Page #

DG_CONTROL DAT_NULL MSG_CLOSEDSOK
MSG_CLOSEDSREQ 7-190
MSG_DEVICEEVENT 7-192
MSG_XFERREADY 7-193

7-140 TWAIN 1.9 Specification

Operation Triplets

Format of the Operation Triplet Descriptions

The following pages describe the operation triplets. They are all included and are arranged in
alphabetical order using the Data Group, Data Argument Type, and Message identifier list.

There are three operations that are duplicated because that have a different originator and/or
destination in each case. They are:

*+ DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS

v" from Application to Source Manager
v" from Source Manager to Source

+ DG_CONTROL / DAT_IDENTITY /7 MSG_OPENDS

v" from Application to Source Manager
v" from Source Manager to Source

« DG_CONTROL 7 DAT_STATUS / MSG_GET

v" from Application to Source Manager
v" from Application to Source

The format of each page is:

Triplet - The Concise DG / DAT / MSG Information

Call
Actual format of the routine call (parameter list) for the operation. Identification of the data
structure used for the pData parameter is included.

Valid States
The states in which the application, Source Manager, or Source may legally invoke the
operation.

Description

General description of the operation.

Origin of the Operation (Application, Source Manager or, Source)

The action(s) the application, Source Manager, or Source should take before invoking the
operation.

Destination of the Operation (Source Manager or Source)
The action that the destination element (Source Manager or Source) of the operation will take.

Return Codes
The Return Codes and Condition Codes that are defined and valid for this operation.

See Also
Lists other related operation triplets, capabilities, constants, etc.

TWAIN 1.9 Specification 7-141

Chapter 7

Operation Triplets

DG_AUDIO / DAT_AUDIOFILEXFER / MSG_GET

Call
DSM Entry (pOrigin, pDest, DG AUDI O, DAT_AUDI OFI LEXFER, MSG GET, NULL);

Valid States

6 (transitions to state 7)

Description

(Similar operation to DAT_IMAGEFILEXFER).

This operation is used to initiate the transfer of audio from the Source to the application via the
disk-file transfer mechanism. It causes the transfer to begin.

No special set up or action required. Application should have already invoked the
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET or the DG_CONTROL /
DAT_SETUPFILEXFER2 / MSG_SET operation, unless the Source’s default transfer format and
file name (typically, TWAINAUD.TMP) are acceptable to the application. The application need
only invoke this operation once per image transferred.

Source should acquire the audio data, format it, create any appropriate header information, and
write everything into the file specified by the previous DG_CONTROL /
DAT_SETUPFILEXFER / MSG_SET or the DG_CONTROL / DAT_SETUPFILEXFER2 /
MSG_SET operation, and close the file.

Audio transfers are optional. If an application transfers only the images and never changes to
DG_AUDIO, then the audio snippets will be automatically discarded or skipped by the Source.

Return Codes

TWRC_CANCEL

TWRC_XFERDONE

TWRC_FAI LURE
TWCC_BADPROTOCCL.
TWCC_OPERATI ONERROR
TWCC_SEQERROR - not state 6.

See Also
ACAP_XFERMECH

7-142 TWAIN 1.9 Specification

Operation Triplets

DG_AUDIO / DAT_AUDIOINFO / MSG_GET

Call
DSM Entry (pOrigin, pDest, DG AUDI O, DAT_AUDI O NFO, MSG GET,
pSour ceAudi ol nfo);
pSourceAudiolnfo = A pointer to a TW_AUDIOINFO structure
Valid States
6and 7
Description

Used to get the information of the current audio data ready to transfer. (Similar operation to
DAT_IMAGEINFO)

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWCC_BADPROTOCOL
TWCC_SEQERROR

See Also

TWAIN 1.9 Specification 7-143

Chapter 7

DG_AUDIO / DAT_AUDIONATIVEXFER / MSG_GET

Call
DSM Entry (pOrigin, pDest, DG AUDI O, DAT_AUDI ONATI VEXFER, MSG GET, pHandle);
pHandle = A pointer to a variable of type TW_UINT32
On Windows - This 32 bit integer is a handle variable to WAV data located in memory.
On Macintosh - This 32-bit integer is a handle to AIFF data
Valid States
6 (transitions to state 7)
Description

(Similar operation to DAT_IMAGENATIVEXFER).

Causes the transfer of an audioZs data from the Source to the application, via the Native
transfer mechanism, to begin. The resulting data is stored in main memory in a single block.
The data is stored in AIFF format on the Macintosh and as a WAV format under Microsoft
Windows. The size of the audio snippet that can be transferred is limited to the size of the
memory block that can be allocated by the Source.

Note: This is the default transfer mechanism. All Sources support this mechanism if
DG_AUDIO is supported. The Source will use this mechanism unless the application
explicitly negotiates a different transfer mechanism with ACAP_XFERMECH.

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWCC_BADPROTOCOL.
TWCC_SEQERRCR - not state 6.

See Also

7-144

ACAP_XFERMECH

TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_CAPABILITY / MSG_GET

Call
DSM Entry(pOrigi n, pDest, DG CONTROL, DAT_CAPABILITY, MSG GET, pCapability);
pCapability = A pointer to a TW_CAPABILITY structure.
Valid States
4 through 7
Description
Returns the Source’s Current, Default and Available Values for a specified capability.
These values reflect previous MSG_SET operations on the capability, or Source’s automatic
changes. (See MSG_SET).
Note: This operation does not change the Current or Available Values of the capability.
Application
Set the pCapability fields as follows:
pCapability->Cap = the CAP_xxxx or ACAP_xxxx or | CAP_xxxx identifier
pCapabi | i ty->ConType = TWON_DONTCARE16
pCapabi | i t y- >hCont ai ner = NULL
The Source will allocate the memory for the necessary container structure but the application
must free it when the operation is complete and the application no longer needs to maintain the
information.
Use MSG_GET:
» As the first step in negotiation of a capability’s Available Values.
e To check the results if a MSG_SET returns TWRC_CHECKSTATUS.
* To check the Available, Current and Default VValues with one command.
This operation may fail for a low memory condition. Either recover from a
TWCC_LOWMEMORY failure by freeing memory for the Source to use so it can continue, or
terminating the acquisition and notifying the user of the low memory problem.
Source

If the application requests this operation on a capability your Source does not recognize (and
you're sure you’ve implemented all the capabilities that you’re required to), disregard the
operation, but return TWRC_FAILURE with TWCC_BADCAP.

If you support the capability, fill in the fields listed below and allocate the container structure
and place its handle into pCapability->hContainer. The container should be referenced by a
“handle” of type TW_HANDLE.

TWAIN 1.9 Specification 7-145

Chapter 7

Fill the fields in pCapability as follows:

pCapabi l i ty->ConType = TWON_ARRAY,
TWON_ONEVAL UE,

TWON_ENUMERATI ON, or

TWON_RANGE

pCapabi |l i ty->hContai ner = TW HANDLE referencing a contai ner of ConType

Set ConType to the container type your Source uses for this capability. For container types of
TWON_ARRAY and TWON_ONEVALUE provide the Current Value. For container types
TWON_ENUMERATION and TWON_RANGE provide the Current, Default and Available
Values.

This is a memory allocation operation. It is possible for this operation to fail due to a low
memory condition. Be sure to verify that the allocation is successful. If it is not, attempt to
reduce the amount of memory occupied by the Source. If the allocation cannot be made, return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the
pCapability->hContainer handle to NULL.

Note that the Source must be able to respond to an inquiry about any of its capabilities at any
time that the Source is open.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADCAP /* Unknown capability--Source does not recogni ze */
/* this capability. This code should not be used */
/* by sources after 1.6. Applications still need */
/* to test for it for backward conpatibility. */
TWCC_CAPUNSUPPORTED /* Capability not supported by source. Sources*/
/* 1.6 and newer must use this instead of */
/* using TWCC_BADCAP. */
TWCC_CAPBADOPERATI ON /* Qperation not supported by capability. */
/* Sources 1.6 and newer must use this instead*/

/* of using TWCC_BADCAP.
TWCC_CAPSEQERRCR /* Capability has dependency on ot her */
/* capability. Sources 1.6 and newer must use */
/* this instead of using TWCC_BADCAP. */
TWCC_BADDEST /* No such Source in session with */
/* application */
TWCC_LOMEMORY /* Not enough menmory to conplete the */
/* operation */
TWCC_SEQERROR /* Qperation invoked in invalid state */

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT, MSG_GETDEFAULT,
MSG_RESET, and MSG_SET

Capability Constants (in Chapter 8)

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in
Chapter 8)

Listing of all capabilities (in Chapter 9)

7-146 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_CAPABILITY, MSG GETCURRENT,
pCapabi lity);
pCapability = A pointer to a TW_CAPABILITY structure.
Valid States
4 through 7
Description
Returns the Source’s Current Value for the specified capability.
The Current Value reflects previous MSG_SET operations on the capability, or Source’s
automatic changes. (See MSG_SET).
Note: This operation does not change the Current Values of the capability.
Application

Set the pCapability fields as follows:

pCapabi lity->Cap = the CAP_xxxx or ACAP_xxxx or | CAP_xxxx identifier
pCapabi |l i ty->ConType = TWON_DONTCARE16
pCapabi |l i ty->hCont ai ner = NULL

The Source will allocate the memory for the necessary container structure but the application
must free it when the operation is complete and the application no longer needs to maintain the
information.

Use MSG_GETCURRENT:

e To check the Source’s power-on Current Values (see Chapter 9 for TWAIN-defined
defaults for each capability).

» To check just the Current Value (in place of using MSG_GET).

 In State 6 to determine the settings. They could have been set by the user (if
TW_USERINTERFACE.ShowUI = TRUE) or be the results of automatic processes used
by the Source.

This operation may fail for a low memory condition. Either recover from a
TWCC_LOWMEMORY failure by freeing memory for the Source to use so it can continue, or
terminating the acquisition and notifying the user of the low memory problem.

TWAIN 1.9 Specification 7-147

Chapter 7

Source

If the application requests this operation on a capability your Source does not recognize (and
you're sure you’ve implemented all the capabilities that you’re required to), disregard the
operation, but return TWRC_FAILURE with TWCC_BADCAP.

If you support the capability, fill in the fields listed below and allocate the container structure
and place its handle into pCapability->hContainer. The container should be referenced by a
“handle” of type TW_HANDLE.

Fill the fields in pCapability as follows:

pCapabi |l i ty->ConType = TWON _ARRAY or TWON_ ONEVALUE
pCapabi |l i ty->hCont ai ner = TW HANDLE ref erenci ng a contai ner of ConType

Set ConType to the container type that matches the type for this capability. Fill the fields in the
container structure with the Current Value of the capability.

This is a memory allocation operation. It is possible for this operation to fail due to a low
memory condition. Be sure to verify that the allocation is successful. If it is not, attempt to
reduce the amount of memory occupied by the Source. If the allocation cannot be made, return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the
pCapability->hContainer handle to NULL.

Note that the Source must be able to respond to an inquiry about any of its capabilities at any
time that the Source is open.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADCAP /* Unknown capability--Source does not recognize */
* this capability. This code should not be used */
/* by sources after 1.6. Applications still need */
/* to test for it for backward conpatibility. */
TWCC_CAPUNSUPPORTED /* Capability not supported by source. Sources*/
/* 1.6 and newer nust use this instead of */
/* usi ng TWCC_BADCAP. */
TWCC_CAPBADOPERATI ON /* Operation not supported by capability. */
/* Sources 1.6 and newer nust use this instead*/

/* of using TWCC_BADCAP.
TWCC_CAPSEQERRCR /* Capability has dependency on ot her */
/* capability. Sources 1.6 and newer nust use */
/* this instead of using TWCC BADCAP. */
TWCC_BADDEST /* No such Source in-session with */
/* application */
TWCC_LOWEMORY /* Not enough nenory to conplete the */
/* operation */
TWCC_SEQERROR /* Operation invoked in invalid state. */

See Also
DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETDEFAULT, MSG_RESET, and
MSG_SET

Capability Constants (in Chapter 8)

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in
Chapter 8)

Listing of all capabilities (in Chapter 9)

7-148 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_CAPABILITY, MSG GETDEFAULT,
pCapabi lity);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States
4 through 7

Description

Returns the Source’s Default Value. This is the Source’s preferred default value.

The Source’s Default Value cannot be changed.

Application

Set the pCapability fields as follows:

pCapability->Cap = the CAP_xxxx or ACAP_xxxx or | CAP_xxxx identifier
pCapabi |l i ty->ConType = TWON_DONTCARE16
pCapabi |l i ty->hCont ai ner = NULL

The Source will allocate the memory for the necessary container structure but the application
must free it when the operation is complete and the application no longer needs to maintain the
information.

Use MSG_GETDEFAULT:

» To check the Source’s preferred Values. Using the Source’s preferred default as the
Current Value may increase performance in some Sources.

This operation may fail for a low memory condition. Either recover from a
TWCC_LOWMEMORY failure by freeing memory for the Source to use so it can continue, or
terminating the acquisition and notifying the user of the low memory problem.

Source

If the application requests this operation on a capability your Source does not recognize (and
you are sure you have implemented all the capabilities that you’re required to), disregard the
operation, but return TWRC_FAILURE with TWCC_BADCAP.

If you support the capability, fill in the fields listed below and allocate the container structure
and place its handle into pCapability->hContainer. The container should be referenced by a
“handle” of type TW_HANDLE.

TWAIN 1.9 Specification 7-149

Chapter 7

Fill the fields in pCapability as follows:

pCapabi |l i ty->ConType = TWON _ARRAY or TWON_ ONEVALUE

pCapabi |l i ty->hCont ai ner = TW HANDLE referenci ng a contai ner of ConType

Set ConType to the container type that matches for this capability. Fill the fields in the

container with the Default Value of this capability.

The Default Value is the preferred value for the Source. This value is used as the power-on

value for capabilities if TWAIN does not specify a default.

This is a memory allocation operation. It is possible for this operation to fail due to a low
memory condition. Be sure to verify that the allocation is successful. If it is not, attempt to
reduce the amount of memory occupied by the Source. If the allocation cannot be made return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the

pCapability->hContainer handle to NULL.

Note that the Source must be able to respond to an inquiry about any of its capabilities at any

time that the Source is open.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC_BADCAP

Unknown capability--Source does not recognize */
this capability. This code should not be used */
by sources after 1.6. Applications still need */
to test for it for backward conpatibility. */

TWCC_CAPUNSUPPORTED /* Capability not supported by source. Sources*/

/* 1.6 and newer nust
/* using TWCC_BADCAP.

/* Operation not supported by capability. */
/* Sources 1.6 and newer nust
/*
/*
/

TWCC_CAPBADOPERATI ON

of using TWCC_BADCAP.
Capabi l ity has dependency on ot her */

TWCC_CAPSEQERRCR

use this instead of * [

*/

use this instead*/

* capability. Sources 1.6 and newer nust use */

/* this instead of using TWCC _BADCAP. */

TWCC_BADDEST /* No such Source in-session with */
/* application */

TWCC_LOMEMORY /* Not enough nenory to conplete the */
/* operation */

TWCC_SEQERROR /* Operation invoked in invalid state */

See Also
DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT, MSG_RESET, and

7-150

MSG_SET
Capability Constants (in Chapter 8)

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in

Chapter 8)
Listing of all capabilities (in Chapter 9)

TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_CAPABILITY, MSG GETDEFAULT,
pCapabi lity);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States
4 through 7

Description

Returns the Source’s support status of this capability.

Application
Set the pCapability fields as follows:
pCapability->Cap = the CAP_xxxx or ACAP_xxxx or | CAP_xxxx identifier

pCapabi |l i ty->ConType = TWON_ ONEVALUE
pCapabi | i t y- >hCont ai ner = NULL

The Source will allocate the memory for the necessary container structure but the application
must free it when the operation is complete and the application no longer needs to maintain the
information.

Use MSG_QUERYSUPPORT:
» To check the whether the Source supports a particular operation on the capability.

This operation may fail for a low memory condition. Either recover from a
TWCC_LOWMEMORY failure by freeing memory for the Source to use so it can continue, or
terminating the acquisition and notifying the user of the low memory problem.

Source

Fill the fields in pCapability as follows:
pCapabi |l i ty->ConType = TWON_ONEVALUE

pCapabi |l i ty->hContai ner = TW HANDLE referencing a contai ner of type
TW ONEVALUE.

TWAIN 1.9 Specification 7-151

Chapter 7

Fill the fields in TW_ONVALUE as follows:
ItemType= TWTW_INT32;

Item = Bit pattern representing the set of operation that are supported by the Data
Source on this capability (TWQC_GET, TWQC_SET, TWQC_GETDEFAULT,
TWQC_RESET);

If the application requests this operation on a capability your Source does not recognize (and
you'’re sure you’ve implemented all the capabilities that you’re required to), do not disregard
the operation, but fill out the TWON_ONEVALUE container with a value of zero(0) for the
Item field, indicating no support for any of the DAT CAPABILITY operations, and return a
status of TWRC_SUCCESS.

This is a memory allocation operation. It is possible for this operation to fail due to a low
memory condition. Be sure to verify that the allocation is successful. If it is not, attempt to
reduce the amount of memory occupied by the Source. If the allocation cannot be made return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the
pCapability->hContainer handle to NULL.

Note that the Source must be able to respond to an inquiry about any of its capabilities at any
time that the Source is open.

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session with */
/* application */

TWCC_LOMEMORY /* Not enough nenory to conplete the */
/* operation */

See Also

7-152

DG_CONTROL 7 DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT, MSG_RESET, and
MSG_SET

Capability Constants (in Chapter 8)
Capability Container: TW_ONEVALUE (in Chapter 8).
Listing of all capabilities (in Chapter 9)

TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_CAPABILITY / MSG_RESET

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_CAPABILITY, MSG RESET, pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States
4 only

Description

Change the Current Value of the specified capability back to its power-on value and return the
new Current Value.

The power-on value is the Current Value the Source started with when it entered State 4 after a
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS. These values are listed as TWAIN
defaults (in Chapter 9). If “no default” is specified, the Source uses it preferred default value
(returned from MSG_GETDEFAULT).

Application

Set the pCapability fields as follows:

pCapability->Cap = the CAP_xxxx or ACAP_xxxx or | CAP_xxxx identifier
pCapabi |l i ty->ConType = TWON_DONTCARE16
pCapabi |l i ty->hContai ner = NULL

The Source will allocate the memory for the necessary container structure but the application
must free it when the operation is complete and the application no longer needs to maintain the
information.

Use MSG_RESET:

» To set the Current Value of the specified capability to the Source’s mandatory or
preferred value, and to remove any constants from the allowed values supported by the
Source.

This operation may fail for a low memory condition. Either recover from a
TWCC_LOWMEMORY failure by freeing memory for the Source to use so it can continue, or
terminating the acquisition and notifying the user of the low memory problem.

Source

If the application requests this operation on a capability your Source does not recognize (and
you'’re sure you’ve implemented all the capabilities that you’re required to), disregard the
operation, but return TWRC_FAILURE with TWCC_BADCAP.

If you support the capability, reset the Current Value of the capability back to its power-on
value. This value must also match the TWAIN default listed in Chapter 9.

TWAIN 1.9 Specification 7-153

Chapter 7

Also return the new Current Value (just like in a MSG_GETCURRENT). Fill in the fields listed
below and allocate the container structure and place its handle into pCapability->hContainer.
The container should be referenced by a “handle” of type TW_HANDLE.

Fill the fields in pCapability as follows:

pCapabi l i ty->ConType = TWON_ARRAY or TWON_ ONEVALUE

pCapabi | i ty->hCont ai ner = TW HANDLE ref erenci ng a contai ner of ConType

Set ConType to the container type that matches the type for this capability. Fill the fields in the
container structure with the Current Value of the capability (after resetting it as stated above).

This is a memory allocation operation. It is possible for this operation to fail due to a low
memory condition. Be sure to verify that the allocation is successful. If it is not, attempt to
reduce the amount of memory occupied by the Source. If the allocation cannot be made return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the

pCapability->hContainer handle to NULL.

Note that this operation is only valid in State 4, unless CAP_EXTENDEDCAPS was negotiated.
Any attempt to invoke it in any other state should be disregarded, though the Source should

return TWRC_FAILURE with TWCC_SEQERROR.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADCAP /* Unknown capability--Source does not recognize */
/* this capability. This code should not be used */
/* by sources after 1.6. Applications still need */
/* to test for it for backward conpatibility. */

TWCC_CAPUNSUPPORTED /* Capability not supported by source. Sources*/

/* 1.6 and newer nmnust
/* usi ng TWCC_BADCAP.

/* Operation not supported by capability. */
/* Sources 1.6 and newer nust
/* of using TWCC_BADCAP.
/*
/*
/*

TWCC_CAPBADCOPERATI ON

TWCC_CAPSEQERROR

use this instead of */

*/

use this instead*/

Capabi l ity has dependency on ot her */

capability. Sources 1.6 and newer nust use */

this instead of using TWCC BADCAP. */

TWCC_BADDEST /* No such Source in-session with */
/* application */

TWCC_LOWEMORY /* Not enough nmenory to conplete the */
/* operation */

TWCC_SEQERROR /* COperation invoked in invalid state */

See Also
DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT,

7-154

MSG_GETDEFAULT, and MSG_SET
Capability Constants (in Chapter 8)

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in

Chapter 8)
Listing of all capabilities (in Chapter 9)

TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_CAPABILITY / MSG_SET

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_CAPABILITY, MSG SET, pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4 only (During State 4, applications can also negotiate with Sources for permission to set the
value(s) of specific capabilities in States 5 and 6 through CAP_EXTENDEDCAPS.)

Description

Changes the Current Value(s) and Available Values of the specified capability to those
specified by the application.

Current Values are set when the container isa TW_ONEVALUE or TW_ARRAY. Available
and Current Values are set when the container isa TW_ENUMERATION or TW_RANGE.

Note: Sources are not required to allow restriction of their Available Values, however, this is
strongly recommended.

Application

An application will use the setting of a capability’s Current and Available Values differently
depending on how the Source was enabled (DG_CONTROL / DAT_USERINTERFACE /

MSG_ENABLEDS).
If TW_USERINTERFACE.ShowUI = TRUE

 In State 4, set the Current Value to be displayed to the user as the current value. This
value will be used for acquiring the image unless changed by the user or an automatic
process (such as ICAP_AUTOBRIGHT).

 In State 4, set the Available Values to restrict the settings displayed to the user and
available for use by the Source.

 In State 6, get the Current Value which was chosen by the user or automatic process.
This is the setting used in the upcoming transfer.

If TW_USERINTERFACE.ShowUI = FALSE

» In State 4, set the Current Value to the setting that will be used to acquire images (unless
automatic settings are set to TRUE, for example: ICAP_AUTOBRIGHT).

» In State 6, get the Current Value which was chosen by any automatic processes. This is
the setting used in the upcoming transfer.

TWAIN 1.9 Specification 7-155

Chapter 7

If possible, use the same container type in a MSG_SET that the Source returned from a
MSG_GET. Allocate the container structure. This is where you will place the value(s) you wish
to have the Source set. Store the handle into pCapability->hContainer. The container must be
referenced by a “handle” of type TW_HANDLE.

Set the following:

pCapabi l i ty->ConType = TWON_ARRAY,
TWON_ONEVALUE,
TWON_ENUMERATI ON, or
TWON_RANGE

pCapabi | i ty->Cap = CAP_xxxx designator of
capability of interest

pCapabi |l i ty->hCont ai ner = TW HANDLE referencing a
cont ai ner of ConType

Place the value(s) that you wish the Source to use in the container. If successful, these values
will supersede any previous negotiations for this capability.

The application must free the container it allocated when the operation is complete and the
application no longer needs to maintain the information.

Source
Return TWRC_FAILURE / TWCC_BADCAP:

« If the application requests this operation on a capability your Source does not recognize
(and you're sure you’ve implemented all the capabilities that you’re required to).
Disregard the operation.

Return TWRC_FAILURE / TWCC_BADVALUE:

« If the application requests that a value be set that lies outside the supported range of
values for the capability (smaller than your minimum value or larger than your
maximum value). Set the value to that which most closely approximates the requested
value.

« If the application sends a container that you do not support, or do not support in a
MSG_SET.

« If the application attempts to set the Available Values and the Source does not support
restriction of this capability’s Available Values.

Return TWRC_CHECKSTATUS:

« If the application requests one or more values that lie within the supported range of
values (but that value does not exactly match one of the supported values), set the value
to the nearest supported value. The application should then do a MSG_GET to check
these values.

Return TWRC_FAILURE /7 TWCC_SEQERROR:

« If the application sends the MSG_SET outside of State 4 and the capability has not been
negotiated in CAP_EXTENDEDCAPS.

7-156 TWAIN 1.9 Specification

Operation Triplets

If the request is acceptable, use the container structure referenced by pCapability->hContainer
to set the Current and Available Values for the capability. If the container type is
TWON_ONEVALUE or TWON_ARRAY, set the Current Value for the capability to that value.
If the container type is TWON_RANGE or TWON_ENUMERATION, the Source will
optionally limit the Available Values for the capability to match those provided by the
application, masking all other internal values so that the user cannot select them. Though this
behavior is not mandatory, it is strongly encouraged.

Important Note: Sources should accommodate requests to limit Available Values. In the
interest of adoptability for the breadth of Source manufacturers, such
accommodation is not required. It is recommended, however, that the
Sources do so, and that the Source’s user interface be modified (from its
power-on state, and when the user interface is raised) to reflect any
limitation of choices implied by the newly negotiated settings.

For example, if an application can only accept black and white image data,
it tells the Source of this limitation by doing a MSG_SET on
ICAP_PIXELTYPE with a TW_ENUMERATION or TW_RANGE container
containing only TWPT_BW (black and white).

If the Source disregards this negotiated value and fails to modify its user
interface, the user may select to acquire a color image. Either the user’s
selection would fail (for reasons unclear to the user) or the transfer would
fail (also for unclear reasons for the user). The Source should strive to
prevent such situations.

Return Codes

TWRC_SUCCESS

TWRC_CHECKSTATUS /* capability value(s) could not be */
/* mat ched exactly */

TWRC_FAI LURE

TWCC_BADCAP /* Unknown capability--Source does not recognize */
/* this capability. This code should not be used */
/* by sources after 1.6. Applications still need */
/* to test for it for backward conpatibility. */
TWCC_CAPUNSUPPORTED /* Capability not supported by source. Sources*/
/* 1.6 and newer must use this instead of */
/* using TWCC_BADCAP. */
TWCC_CAPBADOPERATI ON /* Operation not supported by capability. */
/* Sources 1.6 and newer must use this instead*/

/* of using TWCC_BADCAP.
TWCC_CAPSEQERRCR /* Capability has dependency on ot her */
/* capability. Sources 1.6 and newer must use */
/* this instead of using TWCC_BADCAP. */
TWCC_BADDEST /* No such Source in-session with */
/* application */
TWCC_BADVALUE /* illegal value(s)--outside */
/* Source's range for capability */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

TWAIN 1.9 Specification 7-157

Chapter 7

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT,
MSG_GETDEFAULT, and MSG_RESET

Capability Constants (in Chapter 8)

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in
Chapter 8)

Listing of all capabilities (in Chapter 9)

7-158 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_CUSTOMDSDATA / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_CUSTOVDSDATA,
MSG_GET, pCustonData);
pCustomData = A pointer to a TW_CUSTOMDSDATA structure.

Valid States
4 only

Description
This operation is used by the application to query the data source for its current settings, e.g.
DPI, paper size, color format. The sources settings will be returned in a
TW_CUSTOMDSDATA structure. The actual format of the data in this structure is data source
dependent and not defined by TWAIN.

Application
pDest references the sources identity structure. pCustomData points to a
TW_CUSTOMDSDATA structure.

Source

Fills the pCustomData pointer with source specific settings. If supported,
CAP_ENABLEDSUIONLY and CAP_CUSTOMDSDATA are required.

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWCC_SEQERROR

See Also
Capability CAP_CUSTOMDSDATA

TWAIN 1.9 Specification 7-159

Chapter 7

DG_CONTROL / DAT_CUSTOMDSDATA / MSG_SET

7-160

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_CUSTOVDSDATA,
MSG_SET, pCustonData);
pCustomData = A pointer to a TW_CUSTOMDSDATA structure.
Valid States
4 only
Description
This operation is used by the application to set the current settings for a data source to a
previous state as defined by the data contained in the pCustomData data structure. The actual
format of the data in this structure is data source dependent and not defined by TWAIN.
Application
pDest references the sources identity structure. pCustomData points to a
TW_CUSTOMDSDATA structure.
Source

Changes its current settings to the values specified in the pCustomData structure.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC_SEQERROR

See Also

Capability CAP_CUSTOMDSDATA

TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_DEVICEEVENT / MSG_GET

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_DEVI CEEVENT, MSG _GET,
pSour ceDevi ceEvent) ;
pSourceDeviceEvent = A pointer to a TW_DEVICEEVENT structure
Valid States
4 through 7
Description

Upon receiving a DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT from the Source, the
Application must immediately make this call to obtain the event information.

Sources must queue the data for each event so that it is available for this call.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADPROTOCOL - capability not supported.
TWCC_SEQERROR - no events in the queue, or not in States 4 through 7.

See Also

DG_CONTROL / DAT_NULL /7 MSG_DEVICEEVENT
CAP_DEVICEEVENT

TWAIN 1.9 Specification 7-161

Chapter 7

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT

Call
DSM Entry(pOrigin, pDest, DG CONTRCOL, DAT_EVENT, MSG PROCESSEVENT, pEvent);
pEvent = A pointer to a TW_EVENT structure.

Valid States
5 through 7

Description
This operation supports the distribution of events from the application to Sources so that the
Source can maintain its user interface and return messages to the application. Once the
application has enabled the Source, it must immediately begin sending to the Source all events
that enter the application’s main event loop. This allows the Source to update its user interface
in real-time and to return messages to the application which cause state transitions. Even if the
application overrides the Source’s user interface, it must forward all events once the Source has
been enabled. The Source will tell the application whether or not each event belongs to the
Source.
Note: Events only need to be forwarded to the Source while it is enabled.
The Source should be structured such that identification of the event’s “owner” is handled
before doing anything else. Further, the Source should return immediately if the Source isn’t
the owner. This convention should minimize performance concerns for the application
(remember, these events are only sent while a Source is enabled—that is, just before and just
after the transfer is taking place).

Application

Make pEvent->pEvent point to the EventRecord (on Macintosh) or message structure (on
Windows).

Note: On return, the application should check the Return Code from DSM_Entry() for
TWRC_DSEVENT or TWRC_NOTDSEVENT. If TWRC_DSEVENT is returned, the
application should not process the event—it was consumed by the Source. If
TWRC_NOTDSEVENT is returned, the application should process the event as it
normally would.

7-162 TWAIN 1.9 Specification

Operation Triplets

With either of these Return Codes, the application should also check the pEvent->TWMessage
and switch on the result. This is the mechanism used by the Source to notify the application
that a data transfer is ready or that it should close the Source. The Source can return one of the

following messages:

MSG_XFERREADY /* Source has one or nore inages */

/* ready to transfer */
MSG_CLOSEDSREQ /* Source wants to be cl osed, */
/* usually initiated by a */
/* user-generated event */
MSG_NULL /* no message for application */

Source

Process this operation immediately and return to the application immediately if the event
doesn’t belong to you. Be aware that the application will be sending thousands of messages to
you. Consider in-line processing and global flags to speed implementation.

Return Codes
TWRC_DSEVENT

TWRC_NOTDSEVENT

TWRC_FAI LURE
TWCC_BADDEST

/
/

TWCC _SEQERROR [*
/ *

See Also

Sour ce consuned event--application*/

shoul d not process it */

Event belongs to application - */
process as usual */
No such Source in-session */
wi th application */
Qperation invoked in invalid */
state */

DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ
DG_CONTROL / DAT_NULL / MSG_XFERREADY

Event loop information (in Chapter 3)

TWAIN 1.9 Specification

7-163

Chapter 7

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY

Call

DSM Entry (pOrigin, pDest, DG _CONTROL, DAT_FI LESYSTEM
MBG_AUTOMATI CCAPTUREDI RECTORY, pSourceFil eSysten);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States
4 only

Description

This operation selects the destination directory within the Source (camera, storage, etc), where
images captured using CAP_AUTOMATICCAPTURE will be stored. This command only
selects the destination directory (a file of type TWFT_DIRECTORY). The directory must exist
and be accessible to the Source. The creation of images within the directory is at the discretion
of the Source, and may result in the creation of additional sub-directories.

In all other regards the behavior of this operation is the same as DG_CONTROL /
DAT_FILESYSTEM / MSG_CHANGEDIRECTORY.

If the application does not specify a directory for automatic capture, then the destination of the
images is left to the discretion of the Source. A directory named ZImages is recommended, but
not required.

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWCC _BADPROTOCOL - capability not supported.
TWCC DENI ED - operation deni ed (device not ready).
TWCC_FI LENOTFOUND - specified | nput Name does not exist.
TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM /7 MSG_RENAME
CAP_AUTOMATICCAPTURE

7-164 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FILESYSTEM
M5G_CHANGEDI RECTORY, pSourceFil eSystemn);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States
4 only

Description

This operation selects the current device within the Source (camera, storage, etc). If the device is
a TWFT_DOMAIN, then this command enters a directory that can contain TWFT_HOST files. If
the device is a TWFT_HOST, then this command enters a directory that can contain
TWFT_DIRECTORY files. If the device isa TWFT_DIRECTORY, then this command enters a
directory that can contain TWFT_DIRECTORY or TWFT_IMAGE files.

Sources can support part or all of the storage hierarchy that is one of the following:

/Domain/Host/Directory/
/Host/Directory/ ...
/Directory/ ...

(Storage not supported)

It is permitted to mix domain, host, and directory names in the root file system of the Source.
To help resolve any potential name conflict, Applications should set TW_FILESYSTEM->
FileType to the appropriate value for the topmost file. If this is not done and there is a hame
conflict, the Source’s default behavior must be to use the file of type TWFT_DIRECTORY or
TWFT_HOST, in that order.

For example, consider two files named “abc” in the root of a Source:

/abc/123 (abc is a domain)
/abc/789 (abc is a directory)

Change directory to the first one by setting FileType to TWFT_DOMAIN, or to the second one
by setting FileType to TWFT_DIRECTORY. The FileType for each will be discovered while
browsing the directory using DAT_GETFILEFIRST and DAT_GETFILENEXT. If the FileType is
not specified, then the Source must change to the “/abc/789” directory.

Example:

A Source supports two devices: “/Camera” and “/Disk”. If an application changes directory to
/Camera, then it can negotiate imaging parameters and transfer images in a traditional fashion.
If an application changes directory to “/Disk/abc/xyz”, then it cannot negotiate imaging
parameters (the images have already been captured); all it can do is browse the directory tree
and transfer the images it finds.

TWAIN 1.9 Specification 7-165

Chapter 7

The Application sets the new current working directory by placing in the InputName field an
absolute or relative path. The Source returns the absolute path and name of the new directory
in the OutputName field. The special filename dot “.” can be used to retrieve the name of the

current directory. The special filename dot-dot “..” can be used to change to the parent
directory. Refer to the section on File Systems for more information.

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWCC _BADPROTOCOL - capability not supported.
TWCC DENI ED - operation deni ed (device not ready).
TWCC_FI LENOTFOUND - specified | nput Name does not exist.
TWCC_SEQERROR - not state 4.

See Also

7-166

DG_CONTROL / DAT_FILESYSTEM /7 MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM /7 MSG_COPY

DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE

DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA

DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO

DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_FILESYSTEM / MSG_COPY

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FILESYSTEM
M5G_COPY, pSourceFil eSysten);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States
4 only

Description

This operation copies a file or directory. Absolute and relative pathnames are supported. A file
may not be overwritten with this command. If an Application wishes to do this, it must first
delete the unwanted file and then reissue the Copy command.

The Application specifies the path and name of the entry to be copied in InputName. The
Application specifies the new patch and name in OutputName.

It is not permitted to copy files into the root directory.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADPROTOCOL - capability not supported.

TWCC DENIED - file cannot be deleted (root file, or protected
by Source).

TWCC_FI LEEXI STS - specified Qutput Nane al ready exi sts.
TWCC_FI LENOTFQUND - | nput Name not found or CQutput Nane invalid.
TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM /7 MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE

DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA

DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO

DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

TWAIN 1.9 Specification 7-167

Chapter 7

DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FILESYSTEM
M5G_CREATEDI RECTORY, pSourceFil eSysten);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation creates a new directory within the current directory. Pathnames are not
allowed, only the name of the new directory can be specified.

Example:

“abc” is valid.
“/Disk/abc” is not valid.

The Application specifies the name of the new directory in InputName.

On success, the Source returns the absolute path and name of the new directory in
OutputName.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADPROTOCOL - capability not supported.

TWCC DENI ED - cannot create directory in current directory,
directories may not be created in root, or the
Source may opt to prevent the creation of new
directories in sone instances, for instance if
the new directory would be too deep in the tree.

TWCC_FI LEEXI STS - the specified | nputNanme al ready exists.
TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL 7/ DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL 7/ DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY

DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE

DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA

DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO

DG_CONTROL 7/ DAT_FILESYSTEM / MSG_GETNEXTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

7-168 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FILESYSTEM
M5G _DELETE, pSourceFil eSystem;

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States
4 only

Description

This operation deletes a file or directory on the device. Pathnames are not allowed, only the
name of the file or directory to be deleted can be specified. Recursive deletion can be specified
by setting the pSourceFileSystem->Recursive to TRUE.

Example:

“abc” is valid.
“/Disk/abc” is not valid.

The Application specifies the name of the entry to be deleted in InputName. There is no return
in OutputName on success.

The Application cannot delete entries in the root directory. The Application cannot delete
directories unless they are empty.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADPROTOCOL - capability not supported.

TWCC DENIED - file cannot be deleted (root file, or protected
by Source).

TWCC_FI LENOTFOUND - fil enane not found.
TWCC_NOTEMPTY - directory is not enpty, and cannot be del eted.
TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM /7 MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA

DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE

DG_CONTROL / DAT_FILESYSTEM /7 MSG_GETINFO

DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

TWAIN 1.9 Specification 7-169

Chapter 7

DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FI LESYSTEM
M5G_FORMATMEDI A, pSour ceFil eSysten);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States
4 only

Description

This operation formats the specified storage. This operation destroys all images and sub-
directories under the selected device. Use with caution.

The Application specifies the name of the device to be deleted in InputName. There is no data
returned by this call.

The Application cannot format the root directory. Sources may opt to protect their media from
this command, so Applications must check return and condition codes.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADPROTOCOL - capability not supported.
TWCC DENIED - format denied (root directory, or protected by Source).
TWCC_FI LENOTFOUND - fil enane not found.
TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM /7 MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO

DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

7-170 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FILESYSTEM
MS5G_GETCLOSE, pSourceFil eSystem;

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 through 6

Description
The operation frees the Context field in pSourceFileSystem.

Every call to DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE must be matched
by a call to MSG_GETCLOSE to release the Context field in the pSourceFileSystem structure.

An Application may (erroneously) issue this operation at any time (even if a
MSG_GETFIRSTFILE has not been issued yet). Sources must protect themselves from such
uses. See the section on File Systems for more information on why and how this must be done.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADPROTOCOL - capability not supported.
TWCC_SEQERROR - not state 4, 5 or 6.

See Also

DG_CONTROL / DAT_FILESYSTEM /7 MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE

DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA

DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO

DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

TWAIN 1.9 Specification 7-171

Chapter 7

DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE

7-172

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FILESYSTEM
M5G_GETFI RSTFI LE, pSourceFi | eSystem ;

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 through 6

Description

This operation gets the first filename in a directory, and returns information about that file (the
same information that can be retrieved with MSG_GETINFO).

The Source positions the Context to point to the first filename. InputName is ignored.
OutputName contains the absolute path and name of the file. If the Application enables the
Source at this time, and the PendingXfers.Count is non-zero, the Application will immediately
receive a MSG_XFERREADY, and the current image will be transferred.

Applications must not assume any ordering of the files delivered by the Source, with one
exception: if MSG_GETFIRSTFILE is issued in the root directory, then the operation must
return a TWFT_CAMERA device.

NB: “.” and “..” are NEVER reported by this command.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADPROTOCOL - capability not supported.

TWCC DENIED - file exists, but information about it has not
been returned.

TWCC_FI LENOTFOUND - directory is enpty.
TWCC_SEQERROR - not state 4, 5 or 6.

See Also

DG_CONTROL / DAT_FILESYSTEM /7 MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE

DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA

DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO

DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FILESYSTEM
MBG_GETI NFO, pSourceFil eSysten);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States
4 through 7

Description

This operation fills the information fields in pSourceFileSystem.

InputName contains the absolute or relative path and filename of the requested file.
OutputName returns the absolute path to the file.

Example InputName:

“abc” is valid.
“/Disk/abc” is valid.
The empty string “* returns information about the current file (if any).

.” returns information about the current directory.

.7 returns information about the parent directory.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADPROTOCOL - capability not supported.

TWCC DENIED - - file exists, but information about it has not
been returned.

TWCC_FI LENOTFOUND - specified file does not exist.
TWCC_SEQERROR - not state 4 - 7, or no current file.

See Also

DG_CONTROL 7/ DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE

DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA

DG_CONTROL 7/ DAT_FILESYSTEM / MSG_GETCLOSE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

TWAIN 1.9 Specification 7-173

Chapter 7

DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE

Call
DSM Entry (pOrigin, pDest, DG _CONTROL, DAT_FI LESYSTEM
MBG_GETNEXTFI LE, pSourceFil eSysten);
pSourceFileSystem = A pointer to a TW_FILESYSTEM structure
Valid States
4 through 6
Description

This operation gets the next filename in a directory, and returns information about that file (the
same information that can be retrieved with MSG_GETINFO).

The Source positions the Context to point to the next filename. InputName is ignored.
OutputName contains the absolute path and name of the file. If the Application enables the
Source at this time, and the PendingXfers.Count is non-zero, the Application will immediately
receive a MSG_XFERREANDY, and the current image will be transferred.

A call to MSG_GETFIRSTFILE must be issued on a given directory before the first call to
MSG_GETNEXTFILE.

NB: The “.” and “..” entries are NEVER reported by this command

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADPROTOCOL - capability not supported.

TWCC DENIED - file exists, but information about it has not
been returned.

TWCC _FI LENOTFOUND - directory is enpty.
TWCC _SEQERROR - not state 4, 5 or 6, or invalid context (nust issue
MBG_GETFI LEFI RST before cal ling MSG_GETNEXTFI LE) .

See Also

DG_CONTROL / DAT_FILESYSTEM /7 MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE

DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA

DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO

DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

7-174 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FILESYSTEM
M5G_RENAME, pSourceFil eSystem ;

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States
4 only

Description

This operation renames (and optionally moves) a file or directory. Absolute and relative path
names are supported. A file may not be overwritten with this command. If an Application
wishes to do this it must first delete the unwanted file, then issue the rename command.

The Application specifies the path and name of the entry to be renamed in InputName. The
Application specifies the new path and name in OutputName.

Filenames in the root directory cannot be moved or renamed.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADPROTOCOL - capability not supported.

TWCC DENIED - file cannot be deleted (root file, or protected
by Source).

TWCC_FI LEEXI STS - specified CQutput Nane al ready exists.
TWCC_FI LENOTFOUND - | nput Nanme not found or CQutputNane invalid.
TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL 7/ DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE

DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA

DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE

DG_CONTROL 7/ DAT_FILESYSTEM / MSG_GETFIRSTFILE

DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO

DG_CONTROL 7/ DAT_FILESYSTEM / MSG_GETNEXTFILE

TWAIN 1.9 Specification 7-175

Chapter 7

DG _CONTROL / DAT_IDENTITY / MSG_CLOSEDS (from Application to Source Manager)

Call

DSM Entry(pOrigin, NULL, DG CONTROL, DAT_ I DENTITY, MSG CLOSEDS,
pSour cel dentity);

pSourceldentity = A pointer to a TW_IDENTITY structure.

Valid States

4 only (Transitions to State 3, if successful)

Description

When an application is finished with a Source, it must formally close the session between them
using this operation. This is necessary in case the Source only supports connection with a
single application (many desktop scanners will behave this way). A Source such as this cannot
be accessed by other applications until its current session is terminated.

Application

Reference pSourceldentity to the application’s copy of the TW_IDENTITY structure for the
Source whose session is to be ended. The application needs to unload the Source from memory
after it is closed. The process for unloading the Source is similar to that used to unload the
Source Manager.

Source Manager

On Macintosh only—Closes the Source and removes it from memory, following receipt of
TWRC_SUCCESS from the Source.

On Windows only—Checks its internal counter to see whether any other applications are
accessing the specified Source. If so, the Source Manager takes no other action. If the closing
application is the last to be accessing this Source, the Source Manager closes the Source
(forwards this triplet to it) and removes it from memory, following receipt of TWRC_SUCCESS
from the Source.

Upon receiving the request from the Source Manager, the Source immediately prepares to
terminate execution.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC_SEQERROR /* Qperation invoked in invalid state */

See Also
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS

7-176 TWAIN 1.9 Specification

Operation Triplets

DG _CONTROL / DAT_IDENTITY / MSG_CLOSEDS (from Source Manager to Source)

Call
DS Entry(pOrigin, DG CONTROL, DAT_IDENTITY, MSG _CLOSEDS, pSourceldentity);

pSourceldentity = A pointer to a TW_IDENTITY structure.

Valid States

4 only (Transitions Source back to the “loaded but not open” State - approximately State 3.5)

Description

Closes the Source so it can be unloaded from memory. The Source responds by doing its
shutdown and clean-up activities needed to ensure the heap will be “clean” after the Source is
unloaded. Under Windows, the Source will only be unloaded if the connection with the last
application accessing it is about to be broken. The Source will know this by its internal
“connect count” that should be maintained by any Source that supports multiple application
connects.

Source Manager

pSourceldentity is filled from a previous MSG_OPENDS operation.

Source

Perform all necessary housekeeping in anticipation of being unloaded. Be sure to dispose of
any memory buffers that the Source has allocated locally, or that may have become the Source’s
responsibility during the course of the TWAIN session. The Source exists in a shared memory
environment. It is therefore critical that all remnants of the Source, except the entry point
(initial) code, be removed as the Source prepares to be unloaded.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_OPERATI ONERROR /* Internal Source error; */
/* handl ed by the Source */

See Also
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS

TWAIN 1.9 Specification 7-177

Chapter 7

DG _CONTROL / DAT_IDENTITY / MSG_GET (from Source Manager to Source)

Call
DS Entry(pOrigin, DG CONTROL, DAT_I| DENTITY, MSG _GET, pSourceldentity);

pSourceldentity = A pointer to a TW_IDENTITY structure.

Valid States

3 through 7 (Yes, the Source must be able to return the identity before it is opened.)

Description

This operation triplet is generated only by the Source Manager and is sent to the Source. It
returns the identity structure for the Source.

Source Manager

No special set up or action required.

Source

Fills in all fields of pSourceldentity except the Id field which is only modified by the Source
Manager. This structure was allocated by either the application or the Source Manager
depending on which one initiated the MSG_OPENDS operation for the Source.

Note: Sources should locate the code that handles initialization of the Source (responding to
MSG_OPENDS) and identification (DAT_IDENTITY / MSG_GET) in the segment first
loaded when the DLL/code resource is invoked. Responding to the identification
operation should not cause any other segments to be loaded. Code to handle all other
operations and to support the user interface should be located in code segments that
will be loaded upon demand. Remember, the Source is a “guest” of the application
and needs to be sensitive to use of available memory and other system resources. The
Source Manager’s perceived performance may be adversely affected unless the Source
efficiently handles identification requests.

Return Codes
TWRC_SUCCESS /* This operation nust succeed. */

7-178 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT

Call
DSM Entry(pOrigin, NULL, DG CONTROL, DAT | DENTITY, MSG GETDEFAULT,
pSour cel dentity);
pSourceldentity = A pointer to a TW_IDENTITY structure.
Valid States
3 through 7
Description
Gets the identification information of the system default Source.
Application

No special set up or action required.

Source Manager

Fills the structure pointed to by pSourceldentity with identifying information about the system
default Source.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_NODS /* no Sources found matching */
/* application's SupportedG oups */
TWCC_LOWEMORY /* not enough nenory to perform */
/* this operation */

See Also

DG_CONTROL 7/ DAT_IDENTITY / MSG_GETFIRST
DG_CONTROL 7/ DAT_IDENTITY / MSG_GETNEXT
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

TWAIN 1.9 Specification 7-179

Chapter 7

DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST

Call

DSM Entry(pOrigin, NULL, DG CONTROL, DAT_ | DENTITY, MSG GETFI RST,
pSour cel dentity);

pSourceldentity = A pointer to a TW_IDENTITY structure.

Valid States
3 through 7

Description

The application may obtain a list of all Sources that are currently available on the system which
match the application’s supported groups (DGs, that the application specified in the
SupportedGroups field of its TW_IDENTITY structure). To obtain the complete list of all
available Sources requires invocation of a series of operations. The first operation uses
MSG_GETFIRST to find the first Source on “the list” (whichever Source the Source Manager
finds first). All the following operations use DG_CONTROL / DAT_IDENTITY /
MSG_GETNEXT to get the identity information, one at a time, of all remaining Sources.

Note: The application must invoke the MSG_GETFIRST operation before a MSG_GETNEXT
operation. If the MSG_GETNEXT is invoked first, the Source Manager will fail the
operation (TWRC_ENDOFLIST).

If the application wants to cause a specific Source to be opened, one whose ProductName the
application knows, it must first establish the existence of the Source using the
MSG_GETFIRST/MSG_GETNEXT operations. Once the application has verified that the
Source is available, it can request that the Source Manager open the Source using
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS. The application must not execute this
operation without first verifying the existence of the Source because the results may be
unpredictable.

Application

No special set up or action required.
Source Manager

Fills the TW_IDENTITY structure pointed to by pSourceldentity with the identity information
of the first Source found by the Source Manager within the TWAIN directory/folder.

7-180 TWAIN 1.9 Specification

Operation Triplets

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_NODS /* No Sources can be found */
TWCC_LOWEMORY /* Not enough nmenory to perform*/
/* this operation */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT
DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

TWAIN 1.9 Specification 7-181

Chapter 7

DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT

Call
DSM Entry(pOrigin, NULL, DG CONTROL, DAT_IDENTITY, MSG GETNEXT,
pSour cel dentity);

pSourceldentity = A pointer to a TW_IDENTITY structure.

Valid States
3 through 7

Description

The application may obtain a list of all Sources that are currently available on the system which
match the application’s supported groups (DGs, that the application specified in the
SupportedGroups field of its TW_IDENTITY structure). To obtain the complete list of all
available Sources requires invocation of a series of operations. The first operation uses
DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST to find the first Source on “the list”
(whichever Source the Source Manager finds first). All the following operations use
MSG_GETNEXT to get the identity information, one at a time, of all remaining Sources.

Note: The application must invoke the MSG_GETFIRST operation before a MSG_GETNEXT
operation. If the MSG_GETNEXT is invoked first, the Source Manager will fail the
operation (TWRC_ENDOFLIST).

If the application wants to cause a specific Source to be opened, one whose ProductName the
application knows, it must first establish the existence of the Source using the
MSG_GETFIRST/MSG_GETNEXT operations. Once the application has verified that the
Source is available, it can request that the Source Manager open the Source using
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS. The application must not execute this
operation without first verifying the existence of the Source because the results may be
unpredictable.

Application

No special set up or action required.
Source Manager

Fills the TW_IDENTITY structure pointed to by pSourceldentity with the identity information
of the next Source found by the Source Manager within the TWAIN directory/folder.

7-182 TWAIN 1.9 Specification

Return Codes

TWRC_SUCCESS
TWRC_ENDCFLI ST

TWRC_FAI LURE
TWCC_LOWWENORY

See Also

after MSG GETNEXT if no nore */
Sour ces */

not enough nenory to perform?*/
this operation */

DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT
DG_CONTROL / DAT_IDENTITY /7 MSG_GETFIRST
DG_CONTROL / DAT_IDENTITY /7 MSG_OPENDS
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

TWAIN 1.9 Specification

Operation Triplets

7-183

Chapter 7

DG _CONTROL / DAT_IDENTITY / MSG_OPENDS (from Application to Source Manager)

Call

DSM Entry(pOrigin, NULL, DG CONTROL, DAT_ I DENTITY, MSG_OPENDS,
pSour cel dentity);

pSourceldentity = A pointer to a TW_IDENTITY structure.

Valid States

3 only (Transitions to State 4, if successful)

Description

Loads the specified Source into main memory and causes its initialization.

Application

The application may specify any available Source’s TW_IDENTITY structure in
pSourceldentity. That structure may have been obtained using a MSG_GETFIRST,
MSG_GETNEXT, or MSG_USERSELECT operation. If the session with the Source Manager
was closed since the identity structure being used was obtained, the application must set the Id
field to 0. This will cause the Source Manager to issue the Source a new Id. The application can
have the Source Manager open the default Source by setting the ProductName field to “\0”
(Null string) and the Id field to zero.

Source Manager

Opens the Source specified by pSourceldentity and creates a unique Id value for this Source
(under Microsoft Windows, this assumes that the Source hadn’t already been opened by
another application). This value is recorded in pSourceldentity->Id. The Source Manager
passes the triplet on to the Source to have the remaining fields in pSourceldentity filled in.

Upon receiving the request from the Source Manager, the Source fills in all the fields in
pSourceldentity except for Id. If an application tries to connect to a Source that is already
connected to its maximum number of applications, the Source returns
TWRC_FAILURE/TWCC_MAXCONNECTIONS.

Warning: The Source and application must not assume that the value written into
pSourceldentity.ld will remain constant between sessions. This value is used
internally by the Source Manager to uniquely identify applications and Sources
and to manage the connections between them. During a different session, this
value may still be valid but might be assigned to a different application or Source!
Don’t use this value directly.

7-184 TWAIN 1.9 Specification

Operation Triplets

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_LOWEMORY not enough nmenory to */

open the Source */
Sour ce cannot support*/
anot her connection */
speci fied Source was */
not found */
internal Source error;*/
handl ed by the Source */

TWOC_MAXCONNECTI ONS
TWOC_NODS

TWCC_OPERATI ONERROR

~ — — — ~— ~— ~— —
E E I T * F

See Also

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS
DG_CONTROL / DAT_IDENTITY / MSG_GET
DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT
DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST
DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

TWAIN 1.9 Specification 7-185

Chapter 7

DG _CONTROL / DAT_IDENTITY / MSG_OPENDS (from Source Manager to Source)

Call
DS Entry(pOrigin, DG CONTROL, DAT_I DENTITY, MSG _OPENDS, pSourceldentity);

pSourceldentity = A pointer to a TW_IDENTITY structure.

Valid States

Source is loaded but not yet open (approximately State 3.5, session transitions to State 4, if
successful).

Description

Opens the Source for operation.

Source Manager

pSourceldentity is filled in from a previous DG_CONTROL / DAT_IDENTITY / MSG_GET
and the Id field should be filled in by the Source Manager.

Source

Initializes any needed internal structures, performs necessary checks, and loads all resources
needed for normal operation.

Windows only: Source should record a copy of *pOrigin, the application’s TW_IDENTITY
structure, whose Id field maintains a unique number identifying the application that is calling.
Sources that support only a single connection should examine pOrigin->ld for each operation to
verify they are being called by the application they acknowledge being connected with. All
requests from other applications should fail (TWRC_FAILURE /
TWCC_MAXCONNECTIONS). The Source is responsible for managing this, not the Source
Manager (the Source Manager does not know in advance how many connections the Source
will support).

Macintosh Note: Since the Source(s) and the Source Manager connected to a particular
application live within that application’s heap space, and are not shared with any other
application, the discussion about multiply-connected Sources and verifying which application
is invoking an operation is not relevant. A Source or Source Manager on the Macintosh can only
be connected to a single application, though multiple copies of a Source or the Source Manager
may be active on the same host simultaneously. These instances simply exist in different
applications’ heaps. If the instances need to communicate with one another, they might use a
special file, Gestalt selector, or other IPC mechanism.

7-186 TWAIN 1.9 Specification

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC_LOWEMORY

TWCC_MAXCONNECTI ONS

TWCC_OPERATI ONERRCOR

See Also

/*

/*
/*
/*

not enough menory to */

open the Source */
Sour ce cannot support */
anot her connection */

internal Source error;*/
handl ed by the Source */

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS
DG_CONTROL / DAT_IDENTITY / MSG_GET

TWAIN 1.9 Specification

Operation Triplets

7-187

Chapter 7

DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

7-188

Call
DSM Entry(pOrigin, NULL, DG CONTROL, DAT_ | DENTITY, MSG USERSELECT,
pSour cel dentity);
pSourceldentity = A pointer to a TW_IDENTITY structure.

Valid States
3 through 7

Description
This operation should be invoked when the user chooses Select Source... from the application’s
File menu (or an equivalent user action). This operation causes the Source Manager to display
the Select Source dialog. This dialog allows the user to pick which Source will be used during
subsequent Acquire operations. The Source selected becomes the system default Source. This
default persists until a different Source is selected by the user. The system default Source may
be overridden by an application (the override is local to only that application). Only Sources
that can supply data matching one or more of the application’s SupportedGroups (from the
application’s identity structure) will be selectable. All others will be unavailable for selection.

Application

If the application wants a particular Source, other than the system default, to be highlighted in
the Select Source dialog, it should set the ProductName field of the structure pointed to by
pSourceldentity to the ProductName of that Source. This information should have been
obtained from an earlier operation using DG_CONTROL / DAT_IDENTITY /
MSG_GETFIRST, MSG_GETNEXT, or MSG_USERSELECT. Otherwise, the application should
set the ProductName field in pSourceldentity to the null string (“\0”). In either case, the
application should set the Id field in pSourceldentity to zero.

If the Source Manager can’t find a Source whose ProductName matches that specified by the
application, it will select the system default Source (the default that matches the
SupportedGroups of the application). This is not considered to be an error condition. No error
will be reported. The application should check the ProductName field of pSourceldentity
following this operation to verify that the Source it wanted was opened.

Source Manager

The Source Manager displays the Select Source dialog and allows the user to select a Source.
When the user clicks the “OK” button (“Select” button in the Microsoft Windows Source
Manager) in the Select Source dialog, the system default Source (maintained by the Source
Manager) will be changed to the selected Source. This Source’s identifying information will be
written into pSourceldentity.

TWAIN 1.9 Specification

Operation Triplets

The “Select” button (“OK” button in the Macintosh Source Manager) will be grayed out if there
are no Sources available matching the SupportedGroups specified in the application’s identity
structure, pOrigin. The user must click the “Cancel” button to exit the Select Source dialog.
The application cannot discern from this Return Code whether the user simply canceled the
selection or there were no Sources for the user to select. If the application really wants to know
whether any Sources are available that match the specified SupportedGroups it can invoke a
MSG_GETFIRST operation and check for a successful result.

It copies the TW_IDENTITY structure of the selected Source into pSourceldentity.

Suggestion for Source Developers: The string written in the Source’s
TW_IDENTITY.ProductName field should clearly and unambiguously identify your product or
the Source to the user (if the Source can be used to control more than one device).
ProductName contains the string that will be placed in the Select Source dialog (accompanied,
on the Macintosh, with an icon from the Source’s resource file representing the Source). Itis
further suggested that the Source’s disk file name approximate the ProductName to assist the
user in equating the two.

Return Codes

TWRC_SUCCESS
TWRC_CANCEL * User clicked cancel button - maybe there */
*

were no Sources */

~

TWRC_FAI LURE

TWCC_ LOWEMORY /* not enough nenory to performthis */
/* operation */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT
DG_CONTROL / DAT_IDENTITY /7 MSG_GETFIRST
DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT
DG_CONTROL / DAT_IDENTITY /7 MSG_OPENDS

TWAIN 1.9 Specification 7-189

Chapter 7

DG _CONTROL / DAT_NULL / MSG_CLOSEDSREQ (from Source to Application - Windows only)

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT NULL, MSG CLOSEDSREQ NULL);

This operation requires no data (NULL).

Valid States

5 through 7 (This operation causes the session to transition to State 5.)

Description

While the Source is enabled, the application is sending all events/messages to the Source. The
Source will use one of these events/messages to indicate to the application that it needs to be
closed.

On Windows, the Source sends this DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ to
the Source Manager to cause the Source Manager to post a private message to the application’s
event/message loop. This guarantees that the application will have an event/message to pass
to the Source Manager so it will be able to communicate the Source’s Close request back to the
application.

On Macintosh, the application simply sends Null events to the Source periodically to ensure it
has a communication carrier when needed. Therefore, this operation is not used on a
Macintosh implementation.

Source (on Windows only)

Source creates this triplet with NULL data and sends it to the Source Manager via the Source
Manager’s DSM_Entry point.

pDest is the TW_IDENTITY structure of the application.

Source Manager (on Windows only)

Upon receiving this triplet, the Source Manager posts a private message to the application’s
event/message loop. Since the application is forwarding all events/messages to the Source
while the Source is enabled, this creates a communication device needed by the Source. When
this private message is received by the Source Manager (via the DG_CONTROL /
DAT_EVENT / MSG_PROCESSEVENT operation), the Source Manager will insert a
MSG_CLOSEDSREQ into the TWMessage field on behalf of the Source.

7-190 TWAIN 1.9 Specification

Operation Triplets

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC_SEQERROR /* Operation invoked in invalid state */

TWCC_BADDEST /* No such application in session wth*/
/* Source */

See Also

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT
DG_CONTROL / DAT_USERINTERFACE /7 MSG_DISABLEDS

TWAIN 1.9 Specification 7-191

Chapter 7

DG _CONTROL / DAT_NULL / MSG_DEVICEEVENT (from Source to Application)

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT NULL, MSG DEVI CEEVENT, NULL);

This operation requires no data (NULL)

Valid States
4 through 7

Description

When enabled the source sends this message to the Application to alert it that some event has
taken place. Upon receiving this message, the Application must immediately issue a call to
DG_CONTROL / DAT_DEVICEEVENT / MSG_GET to obtain the event information.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC_SEQERROR - operation invoked in invalid state.
TWCC _BADDEST - no such application in session with Source.

See Also
DG_CONTROL / DAT_DEVICEEVENT / MSG_GET
Capability - CAP_DEVICEEVENT

7-192 TWAIN 1.9 Specification

Operation Triplets

DG _CONTROL / DAT_NULL / MSG_XFERREADY (from Source to Application - applies to Windows only)

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_NULL, MSG XFERREADY, NULL);
This operation requires no data (NULL).

Valid States
5 only (This operation causes the transition to State 6.)

Description

While the Source is enabled, the application is sending all events/messages to the Source. The
Source will use one of these events/ messages to indicate to the application that the data is
ready to be transferred.

On Windows, the Source sends this DG_CONTROL / DAT_NULL / MSG_XFERREADY to the
Source Manager to cause the Source Manager to post a private message to the application’s
event/message loop. This guarantees that the application will have an event/message to pass
to the Source and the Source will be able to communicate its “transfer ready” announcement
back to the application.

On Macintosh, the application simply sends Null events to the Source periodically to ensure it
has a communication carrier when needed. Therefore, this operation is not used on a
Macintosh implementation.

Source (on Windows only)

Source creates this triplet with NULL data and sends it to the Source Manager via the Source
Manager’s DSM_Entry point.

pDest is the TW_IDENTITY structure of the application.

Source Manager

Upon receiving this triplet, the Source Manager posts a private message to the application’s
event/message loop. Since the application is forwarding all events/messages to the Source
while the Source is enabled, this creates a communication device needed by the Source. When
this private message is received by the Source Manager (via the DG_CONTROL /
DAT_EVENT / MSG_PROCESSEVENT operation), the Source Manager will insert the
MSG_XFERREADY into the TWMessage field on behalf of the Source.

TWAIN 1.9 Specification 7-193

Chapter 7

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_SEQERROR /* Operation invoked in invalid state */
TWCC_BADDEST /* No such application in session wth*/
/* Source */

See Also

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMXFER /7 MSG_GET
DG_IMAGE /7 DAT_IMAGENATIVEXFER /7 MSG_GET

7-194 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM

Call
DSM Entry(pOrigin, NULL, DG CONTROL, DAT_PARENT, MSG CLOSEDSM pParent);
On Windows - pParent = points to the window handle (hWnd) that will act as the Source’s

“parent”. The variable is of type TW_INT32 and the low word of this variable must contain the
window handle.

On Macintosh - pParent = should be a 32-bit NULL value.

Valid States

3 only (causes transition back to State 2, if successful)

Description

When the application has closed all the Sources it had previously opened, and is finished with
the Source Manager (the application plans to initiate no other TWAIN sessions), it must close
the Source Manager. The application should unload the Source Manager DLL or code resource
after the Source Manager is closed—unless the application has immediate plans to use the
Source Manager again.

Application

References the same pParent parameter that was used during the “open Source Manager”
operation. If the operation returns TWRC_SUCCESS, the application should unload the Source
Manager from memory.

Source Manager

Does any housekeeping needed to prepare for being unloaded from memory. This
housekeeping is transparent to the application.

Windows only—If the Source Manager is open to at least one other application, it will clean up
just activities relative to the closing application, then return TWRC_SUCCESS. The application
will attempt to unload the Source Manager DLL. Windows will tell the application that the
unload was successful, but the Source Manager will remain active and connected to the other
application(s).

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also
DG_CONTROL / DAT_PARENT / MSG_OPENDSM

TWAIN 1.9 Specification 7-195

Chapter 7

DG_CONTROL / DAT_PARENT / MSG_OPENDSM

Call
DSM Entry(pOrigin, NULL, DG CONTROL, DAT_PARENT, MSG OPENDSM pParent);

On Windows - pParent = points to the window handle (hWnd) that will act as the Source’s
“parent”. The variable is of type TW_INT32 and the low word of this variable must contain the
window handle.

On Macintosh - pParent = should be a 32-bit NULL value.

Valid States

2 only (causes transition to State 3, if successful)

Description

Causes the Source Manager to initialize itself. This operation must be executed before any
other operations will be accepted by the Source Manager.

Application

Windows only—The application should set the pParent parameter to point to a window
handle (hWnd) of an open window that will remain open until the Source Manager is closed. If
application can’t open the Source Manager DLL, Windows displays an error box (this error box
can be disabled by a prior call to SetErrorMode (SET_NOOPENFILEERRORBOX)).

Macintosh only—Set pParent to NULL.

Source Manager

Initializes and prepares itself for subsequent operations. Maintains a copy of pParent.

Windows only—If Source Manager is already open, Source Manager won't reinitialize but will
retain a copy of pParent.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_LOWEMORY /* not enough menmory to perform*/
/* this operation */
TWCC_SEQERROR /* Qperation invoked in invalid */
/* state */

See Also
DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM

7-196 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_PASSTHRU / MSG_PASSTHRU

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_PASSTHRU, MSG PASSTHRU,
pSour cePasst hru) ;
pSourcePassthru = A pointer to a TW_PASSTHRU structure
Valid States
4 through 7
Description

PASSTHRU is intended for the use of Source writers writing diagnostic applications. It allows
raw communication with the currently selected device in the Source.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADPROTOCOL - capability not supported.
TWCC_SEQERROR - conmand coul d not be conpleted in this state.

See Also

CAP_PASSTHRU

TWAIN 1.9 Specification 7-197

Chapter 7

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_PENDI NGXFERS, MSG ENDXFER,
pPendi ngXf ers);

pPendingXfers = A pointer to a TW_PENDINGXFERS structure

Valid States
6and 7

When DAT_XFERGROUP is set to DG_IMAGE:

(Transitions to State 5 if this was the last transfer (pPendingXfers->Count == 0). Transitions
to State 6 if there are more transfers pending (pPendingXfers->Count != 0). To abort all
remaining transfers and transition from State 6 to State 5, use DG_CONTROL /
DAT_PENDINGXFERS / MSG_RESET.

When DAT_XFERGROUP is set to DG_AUDIO:

Transitions to State 6 no matter what the value of pPendingXfers->Count.

Description

This triplet is used to cancel or terminate a transfer. Issued in state 6, this triplet cancels the next
pending transfer, discards the transfer data, and decrements the pending transfers count. In
state 7, this triplet terminates the current transfer. If any data has not been transferred (this is
only possible during a memory transfer) that data is discarded.

The application can use this operation to cancel the next pending transfer (Source writers take
note of this). For example, after the application checks TW_IMAGEINFO (or TW_AUDIOINFO,
if transferring audio snippets), it may decide to not transfer the next image. The operation must
be sent prior to the beginning of the transfer, otherwise the Source will simply abort the current
transfer. The Source decrements the number of pending transfers.

Application

The application must invoke this operation at the end of every transfer to signal the Source that
the application has received all the data it expected. The application should send this after
receiving a TWRC_XFERDONE or TWRC_CANCEL.

No special set up or action required. Be sure to correctly track which state the Source will be in
as a result of your action. Be aware of the value in pPendingXfers->Count both before and after
the operation. Invoking this operation causes the loss of data that your user may not expect to
be lost. Be very careful and prudent when using this operation.

Source

Option #1) Fill pPendingXfers->Count with the number of transfers the Source is ready to
supply to the application, upon demand. If pPendingXfers->Count > 0 (or equals -1), transition
to State 6 and await initiation of the next transfer by the application. If pPendingXfers->Count
== 0, transition all the way back to State 5 and await the next acquisition.

7-198 TWAIN 1.9 Specification

Operation Triplets

Option #2) Preempt the acquired data that is next in line for transfer to the application
(pending transfers can be thought of as being pushed onto a FIFO queue as acquired and
popped off the queue when transferred). Decrement pPendingXfers->Count. If already
acquired, discard the data for the preempted transfer. Update pPendingXfers->Count with the
new number of pending transfers. If this value is indeterminate, leave the value in this field at -
1. Note: -1 is not a valid value for the number of audio snippets.

Option #3) Cancel the current transfer. Discard any local buffers or data involved in the
transfer. Prepare the Source and the device for the next transfer. Decrement pPendingXfers-
>Count (don/t decrement if already zero or -1). If there is a transfer pending, return to State 6
and prepare the Source to begin the next transfer. If no transfer is pending, return to State 5 and
await initiation of the next acquisition from the application or the user. Note: when
DAT_XFERGROUP is set to DG_AUDIO, the Source will not go lower than State 6 based on the
value of pPendingXfers->Count.

Note: If a Source supports simultaneous connections to more than one application, the
Source should maintain a separate pPendingXfers structure for each application it is
in-session with.

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWCC BADDEST /* No such Source in-session with application */
TWCC_SEQERROR /* (peration invoked in invalid state */

See Also

DG_AUDIO / DAT_AUDIOFILEXFER / MSG_GET
DG_AUDIO / DAT_AUDIONATIVEXFER 7/ MSG_GET
DG_CONTROL / DAT_PENDINGXFERS /7 MSG_GET
DG_CONTROL / DAT_PENDINGXFERS /7 MSG_RESET
DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER
DG_CONTROL / DAT_XFERGROUP / MSG_SET

DG_IMAGE / DAT_IMAGEFILEXFER /7 MSG_GET
DG_IMAGE / DAT_IMAGEMEMXFER /7 MSG_GET
DG_IMAGE / DAT_IMAGENATIVEXFER /7 MSG_GET

Capability - CAP_XFERCOUNT

TWAIN 1.9 Specification 7-199

Chapter 7

DG_CONTROL / DAT_PENDINGXFERS / MSG_GET

Call
DSM Entry (pOrigin, pDest, DG _CONTROL, DAT_PENDI NGXFERS,
MBG_GET, pPendi ngXfers);
pPendingXfers = A pointer to a TW_PENDINGXFERS structure
Valid States
4 through 7
Description
Returns the number of transfers the Source is ready to supply to the application, upon demand.
If DAT_XFERGROUP is set to DG_IMAGE, this is the number of images. If DAT_XFERGROUP
is set to DG_AUDIO, this is the number of audio snippets for the current image. If there is no
current image, this call must return TWRC_FAILURE / TWCC_SEQERROR.
Application
No special set up or action required.
Source

Fill pPendingXfers->Count with the number of transfers the Source is ready to supply to the
application, upon demand. This value should reflect the number of complete data blocks that
have already been acquired or are in the process of being acquired.

When DAT_XFERGROUP is set to DG_IMAGE:

If the Source is not sure how many transfers are pending, but is sure that the number is at
least one, set pPendingXfers->Count to -1. A Source connected to a device with an
automatic document feeder that cannot determine the number of pages in the feeder, or
how many selections the user may make on each page, would respond in this way. A
Source providing access to a series of images from a video camera or a data base may also
respond this way.

When DAT_XFERGROUP is set to DG_AUDIO:

-1 is not a valid value for pPendingXfers->Count.

7-200 TWAIN 1.9 Specification

Operation Triplets

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWCC BADDEST /* No such Source in-session with application */
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_PENDINGXFERS /7 MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS /7 MSG_RESET
DG_CONTROL / DAT_PENDINGXFERS /7 MSG_STOPFEEDER
DG_CONTROL / DAT_XFERGROUP /7 MSG_SET

Capability - CAP_XFERCOUNT

TWAIN 1.9 Specification 7-201

Chapter 7

DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET

Call

DSM Entry (pOrigin, pDest, DG _CONTROL, DAT_PENDI NGXFERS,
MBG_RESET, pPendi ngXfers);

pPendingXfers = A pointer to a TW_PENDINGXFERS structure

Valid States
When DAT_XFERGROUP is set to DG_IMAGE:
6 only (Transitions to State 5, if successful)
When DAT_XFERGROUP is set to DG_AUDIO:

6 only (State remains at 6)

Description
Sets the number of pending transfers in the Source to zero.

Application
When DAT_XFERGROUP is set to DG_IMAGE:

No special set up or action required. Be aware of the state transition caused by this
operation. Invoking this operation causes the loss of data that your user may not expect to
be lost. Be very careful and prudent when using this operation. The application may need
to use this operation if an error occurs within the application that necessitates breaking off
all TWAIN sessions. This will get the application, Source Manager, and Source back to State

5 together.
When DAT_XFERGROUP is set to DG_AUDIO:

The available audio snippets are discarded, but the Source remains in State 6.

Source

Set pPendingXfers->Count to zero. Discard any local buffers or data involved in any of the

pending transfers.

When DAT_XFERGROUP is set to DG_IMAGE:

Return to State 5 and await initiation of the next acquisition from the application or the

user.

When DAT_XFERGROUP is set to DG_AUDIO:

Remain in State 6.

7-202

TWAIN 1.9 Specification

Operation Triplets

Note: If a Source supports simultaneous sessions with more than one application, the Source
should maintain a separate pPendingXfers structure for each application it is in-
session with.

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWCC BADDEST /* No such Source in-session with application */
TWCC_SEQERROR /* (Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
DG_CONTROL /7 DAT_PENDINGXFERS / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER
DG_CONTROL / DAT_XFERGROUP / MSG_SET

Capability - CAP_XFERCOUNT

TWAIN 1.9 Specification 7-203

Chapter 7

DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_PENDINGXFERS,
MSG_STOPFEEDER, pPendingXfers);

pPendingXfers = A pointer to a TW_PENDINGXFERS structure

Valid States
6 only

Description

If CAP_AUTOSCAN is TRUE, this command will stop the operation of the scanner’s automatic
feeder. No other action is taken.

Application

The DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET command stops a session
(returning to State 5), but it also discards any images that have been captured by the scanner.
The MSG_STOPFEEDER command solves this problem by stopping the feeder, but remaining
in State 6. The application may then continue to transfer images, until pPendingXfers->Count
goes to zero.

Source

This command should only perform successfully if CAP_AUTOSCAN is TRUE. If
CAP_AUTOSCAN is FALSE, this command should return TWRC_FAILURE /
TWCC_SEQERROR.

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWCC _BADDEST — no such Source in session with application.
TWCC_BADPROTOCOL - Source does not support operation.
TWCC_SEQERROR - Operation invoked in invalid state.

See Also

DG_CONTROL / DAT_PENDINGXFERS /7 MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS /7 MSG_GET
DG_CONTROL / DAT_PENDINGXFERS /7 MSG_RESET

Capabilities - CAP_AUTOSCAN

7-204 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_SETUPFI LEXFER,
MBG_GET, pSetupFile);
pSetupFile = A pointer to a TW_SETUPFILEXFER structure
Valid States
4 through 6
Description
Returns information about the file into which the Source has or will put the acquired
DG_IMAGE or DG_AUDIO data.
Application
No special set up or action required.
Source

Set the following:

pSet upFil e->Format = format of destination file
(DG_I MAGE Constants: TWFF_TI FF, TWFF_PI CT, TWF_BMP, etc.)
(DG_AUDI O Constants: TWAF_WAV, TWAF_AI FF, TWAF_AU, etc.)
pSet upFi |l e->Fi | eName = name of file
(on Wndows, include the conplete path nane)
pSet upFi | e- >VRef Num = vol une reference number
(Maci ntosh only)

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session with application */
TWCC_BADPROTOCOL /* Source does not support file transfer */
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GETDEFAULT
DG_CONTROL / DAT_SETUPFILEXFER / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER /7 MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

TWAIN 1.9 Specification 7-205

Chapter 7

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GETDEFAULT

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_SETUPFI LEXFER,
MBG_GETDEFAULT, pSetupFile);
pSetupFile = A pointer to a TW_SETUPFILEXFER structure
Valid States
4 through 6
Description
Returns information for the default DG_IMAGE or DG_AUDIO file.
Application
No special set up or action required.
Source

Set the following:

pSet upFil e->Format = format of destination file
(DG_I MAGE Constants: TWFF_TI FF, TWFF_PI CT, TWFF_BMP, etc.)
(DG_AUDI O Constants: TWAF_WAV, TWAF_AI FF, TWAF_AU, etc.)
pSet upFi |l e->Fi | eName = name of file
(on Wndows, include the conplete path nane)
pSet upFi | e- >VRef Num = vol une reference number
(Maci ntosh only)

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session with application */
TWCC_BADPROTOCOL /* Source does not support file transfer */
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER /7 MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

7-206 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_SETUPFILEXFER / MSG_RESET

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_SETUPFI LEXFER,
MBG_RESET, pSetupFile);
pSetupFile = A pointer to a TW_SETUPFILEXFER structure
Valid States
4 only
Description
Resets the current file information to the DG_IMAGE or DG_AUDIO default file information
and returns that default information..
Application
No special set up or action required.
Source

Set the following:

pSet upFil e->Format = format of destination file
(DG_I MAGE Constants: TWFF_TI FF, TWFF_PI CT, TWF_BMP, etc.)
(DG_AUDI O Constants: TWAF_WAV, TWAF_AI FF, TWAF_AU, etc.)
pSet upFi |l e->Fi | eName = name of file
(on Wndows, include the conplete path nane)
pSet upFi | e- >VRef Num = vol une reference number
(Maci ntosh only)

Note: VRefNum should be set to reflect the default file only if it already exists). Otherwise,
set this field to NULL.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session with application */
TWCC_BADPROTOCOL /* Source does not support file transfer */
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_SETUPFILEXFER /7 MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER /7 MSG_GETDEFAULT
DG_CONTROL / DAT_SETUPFILEXFER /7 MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER /7 MSG_GET

Capabilities- ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

TWAIN 1.9 Specification 7-207

Chapter 7

DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_SETUPFI LEXFER,
MSG_SET, pSetupFile);
pSetupFile = A pointer to a TW_SETUPFILEXFER structure
Valid States
4 through 6
Description

Sets the file transfer information for the next file transfer. The application is responsible for

verifying that the specified file name is valid and that the file either does not currently exist (in

which case, the Source is to create the file), or that the existing file is available for opening and
read/write operations. The application should also assure that the file format it is requesting
can be provided by the Source (otherwise, the Source will generate a TWRC_FAILURE /

TWCC_BADVALUE error).

Application
Set the following:

pSet upFil e->Format = format of destination file
(DG_| MAGE Constants: TWFF_TIFF, TWFF_PI CT, TWFF_BMP, etc.)
(DG_AUDI O Constants: TWAF_ WAV, TWAF_Al FF, TWAF_AU, etc.)

pSet upFi |l e->Fi | eName = name of file
(on Wndows, include the conplete path nane)

pSet upFi | e->VRef Num = vol une reference number
(Maci ntosh only)

Note: ICAP_XFERMECH or ACAP_XFERMECH (depending on the value of
DAT_XFERGROUP) must have been set to TWSX_FILE during previous capability
negotiation.

Source

Use the specified file format and file name information to transfer the next file to the
application. If any part of the information being set is wrong or missing, use the Source/s
default file (TWAIN.TMP in the current directory for DG_IMAGE data, or TWAIN.AUD in the
current directory for DG_AUDIO data) and return TWRC_FAILURE with
TWCC_BADVALUE. If the format and file name are OK, but a file error occurs when trying to
open the file (other than "file does not exist®), return TWCC_BADVALUE and set up to use the
default file. If the specified file does not exit, create it. If the file exists and has data in it,
overwrite the existing data starting with the first byte of the file.

7-208 TWAIN 1.9 Specification

Operation Triplets

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session with application */
TWCC_BADPROTOCOL /* Source does not support file transfer */
TWCC_BADVALUE /* Source cannot conply with one of the */

/* settings */
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_SETUPFILEXFER /7 MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER /7 MSG_GETDEFAULT
DG_CONTROL / DAT_SETUPFILEXFER /7 MSG_RESET
DG_IMAGE / DAT_IMAGEFILEXFER /7 MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

TWAIN 1.9 Specification 7-209

Chapter 7

DG_CONTROL / DAT_SETUPFILEXFER2 /| MSG_GET

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_SETUPFI LEXFER2,
MBG_GET, pSetupXferFile2);

pSetupXferFile2 = A pointer to a TW_SETUPFILEXFER2 structure

Valid States
4 through 6

Description
Replacement/enhancement of the DAT_SETUPFILEXFER / MSG_GET operation.
Returns information about the file into which the Source has or will put the acquired
DG_IMAGE or DG_AUDIO data.
On Windows: This is a TWAIN 1.9 feature. Sources and Applications are encouraged to use
this call instead of DAT_SETUPFILEXFER whenever both the Source and the Application are
TWAIN 1.9 compliant or higher.
On Macintosh: Sources and Applications must use this new call instead of
DAT_SETUPFILEXFER if they are compatible with TWAIN 1.9 or higher.

Application
The application must allocate the space needed for the pSetupFile->Filename field. It is also
responsible for deallocating this space, when done.

Source

Set the following:

pSet upFil e->Format = format of destination file
(DG_I MAGE Constants: TWFF_TI FF, TWFF_PI CT, TWFF_BMP, etc.)
(DG_AUDI O Constants: TWAF_WAV, TWAF_AI FF, TWAF_AU, etc.)
pSet upFil e->Fi | eName = name of file
(on Wndows, include the conplete path nane)
pSet upFi |l e->Fi | eNaneType = data type of Fil eNane
(TWIY_STR1024 or TWIY_UNI512)
pSet upFi | e->VRef Num = vol une reference nunber
(Maci ntosh only)
pSet upFil e->parI D = parent directory ID
(Maci ntosh only)

7-210 TWAIN 1.9 Specification

Operation Triplets

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWCC _BADDEST — no such Source in session with application.
TWCC_BADPROTOCCOL - Source does not support file transfer.
TWCC_SEQERROR - Operation invoked in invalid state.

See Also

DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_GETDEFAULT
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER /7 MSG_GET

DG_IMAGE /7 DAT_AUDIOFILEXFER /7 MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

TWAIN 1.9 Specification 7-211

Chapter 7

DG_CONTROL / DAT_SETUPFILEXFER2 /| MSG_GETDEFAULT

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_SETUPFI LEXFER2,
MBG_GETDEFAULT, pSetupXferFile2);

pSetupXferFile2 = A pointer to a TW_SETUPFILEXFER2 structure

Valid States
4 through 6

Description
Replacement/enhancement of the DAT_SETUPFILEXFER / MSG_GETDEFAULT operation.
Returns information for the current DG_IMAGE or DG_AUDIO file.

On Windows: This is a TWAIN 1.9 feature. Sources and Applications are encouraged to use
this call instead of DAT_SETUPFILEXFER whenever both the Source and the Application are
TWAIN 1.9 compliant or higher.

On Macintosh: Sources and Applications must use this new call instead of
DAT_SETUPFILEXFER if they are compatible with TWAIN 1.9 or higher.

Application

The application must allocate the space needed for the pSetupFile->Filename field. It is also
responsible for deallocating this space, when done.

Source

Set the following:

pSet upFil e->Format = format of destination file
(DG_I MAGE Constants: TWFF_TI FF, TWFF_PI CT, TWF_BMP, etc.)
(DG_AUDI O Constants: TWAF_WAV, TWAF_AI FF, TWAF_AU, etc.)
pSet upFi |l e->Fi | eName = name of file
(on Wndows, include the conplete path nane)
pSet upFi | e->Fi | eNaneType = data type of Fil eNane
(TWI'Y_STR1024 or TWIY_UNI 512)
pSet upFi | e- >VRef Num = vol une reference number
(Maci ntosh only)
pSet upFil e->parI D = parent directory |ID
(Maci ntosh only)

7-212 TWAIN 1.9 Specification

Operation Triplets

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWCC _BADDEST — no such Source in session with application.
TWCC_BADPROTOCCOL - Source does not support file transfer.
TWCC_SEQERROR - Operation invoked in invalid state.

See Also

DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER /7 MSG_GET
DG_IMAGE /7 DAT_AUDIOFILEXFER /7 MSG_GET

Capabilities- ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

TWAIN 1.9 Specification 7-213

Chapter 7

DG_CONTROL / DAT_SETUPFILEXFER2 /| MSG_RESET

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_SETUPFI LEXFER2,
MBG_RESET, pSetupXferFile2);

pSetupXferFile2 = A pointer to a TW_SETUPFILEXFER2 structure

Valid States
4 only

Description
Replacement/enhancement of the DAT_SETUPFILEXFER / MSG_RESET operation.

Resets the current file information to the DG_IMAGE or DG_AUDIO default file information
and returns that default information.

On Windows: This is a TWAIN 1.9 feature. Sources and Applications are encouraged to use
this call instead of DAT_SETUPFILEXFER whenever both the Source and the Application are
TWAIN 1.9 compliant or higher.

On Macintosh: Sources and Applications must use this new call instead of
DAT_SETUPFILEXFER if they are compatible with TWAIN 1.9 or higher.

Application

The application must allocate the space needed for the pSetupFile->Filename field. It is also
responsible for deallocating this space, when done.

Source

Set the following:

pSet upFil e->Format = format of destination file
(DG_I MAGE Constants: TWFF_TI FF, TWFF_PI CT, TWF_BMP, etc.)
(DG_AUDI O Constants: TWAF_WAV, TWAF_AI FF, TWAF_AU, etc.)
pSet upFi | e->Fi | eName = name of file
(on Wndows, include the conplete path nane)
pSet upFi | e->Fi | eNaneType = data type of Fil eNane
(TWI'Y_STR1024 or TWIY_UNI 512)
pSet upFi | e- >VRef Num = vol une reference number
(Maci ntosh only)
pSet upFil e->parI D = parent directory |ID
(Maci ntosh only)

Note: VrefNum and parlD should be set to reflect the default file only if it already exists.
Otherwise set this field to NULL.

7-214 TWAIN 1.9 Specification

Operation Triplets

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWCC _BADDEST — no such Source in session with application.
TWCC_BADPROTOCCOL - Source does not support file transfer.
TWCC_SEQERROR - Operation invoked in invalid state.

See Also

DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER /7 MSG_GET
DG_IMAGE /7 DAT_AUDIOFILEXFER /7 MSG_GET

Capabilities- ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

TWAIN 1.9 Specification 7-215

Chapter 7

DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_SETUPFILEXFER2,
MSG_SET, pSetupXferFile2);

pSetupXferFile2 = A pointer to a TW_SETUPFILEXFER2 structure

Valid States
4 through 6

Description
Replacement/enhancement of the DAT_SETUPFILEXFER / MSG_SET operation.

Sets the file transfer information for the next file transfer. The application is responsible for
verifying that the specified file name is valid and that the file either does not currently exist (in
which case, the Source is to create the file), or that the existing file is available for opening and
read / write operations. The application should also assure that the file format it is requesting
can be provided by the Source (otherwise, the Source will generate a TWRC_FAILURE /
TWCC_BADVALUE error).

On Windows: This is a TWAIN 1.9 feature. Sources and Applications are encouraged to use
this call instead of DAT_SETUPFILEXFER whenever both the Source and the Application are
TWAIN 1.9 compliant or higher.

On Macintosh: Sources and Applications must use this new call instead of
DAT_SETUPFILEXFER if they are compatible with TWAIN 1.9 or higher.

Application

The application must allocate the space needed for the pSetupFile->Filename field.
It is also responsible for deallocating this space, when done.

Set the following:

pSet upFil e->Format = format of destination file
(DG_I MAGE Constants: TWFF_TI FF, TWFF_PI CT, TWFF_BMP, etc.)
(DG_AUDI O Constants: TWAF_WAV, TWAF_AI FF, TWAF_AU, etc.)
pSet upFil e->Fi | eName = name of file
(on Wndows, include the conplete path nane)
pSet upFi |l e->Fi | eNaneType = data type of Fil eNane
(TWIY_STR1024 or TWIY_UNI512)
pSet upFi | e->VRef Num = vol une reference nunber
(Maci ntosh only)
pSet upFil e->parI D = parent directory ID
(Maci ntosh only)

Note: ICAP_XFERMECH and ACAP_XFERMECH (depending on the value of
DAT_XFERGROUP) must have been set to TWSX_FILE2 during previous capability
negotiation.

7-216 TWAIN 1.9 Specification

Operation Triplets

Source

Use the specified file format and file name information to transfer the next file to
the application. If any part of the information is wrong or missing, use the Source’s
default file (TWAIN.TMP in the current directory for DG_IMAGE data, or
TWAIN.AUD in the current directory for DG_AUDIO data) and return
TWRC_FAILURE with TWCC _BADVALUE. If the format and file name are OK, but a
file error occurs when trying to open the file (other than “file does not exist”),
return TWCC_BADVALUE and set up to use the default file. If the specified file
does not exist, create it. If the file exists and has data in it, overwrite the existing
data starting with the first byte of the file.

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWCC _BADDEST — no such Source in session with application.
TWCC_BADPROTOCCOL - Source does not support file transfer.
TWCC_SEQERROR - Operation invoked in invalid state.

See Also

DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER /7 MSG_GET
DG_IMAGE /7 DAT_AUDIOFILEXFER / MSG_GET

Capabilities- ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

TWAIN 1.9 Specification 7-217

Chapter 7

DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_SETUPMEMXFER, MSG_GET, pSetupMen;
pSetupMem = A pointer to a TW_SETUPMEMXFER structure.

Valid States
4 through 6

Description
Returns the Source’s preferred, minimum, and maximum allocation sizes for transfer memory
buffers. The application using buffered memory transfers must use a buffer size between
MinBufSize and MaxBufSize in their TW_IMAGEMEMXFER.Memory.Length when using the
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET operation. Sources may return a more
efficient preferred value in State 6 after the image size, etc. has been specified.

Application
No special set up or action required.

Source

Set the following:

pSetupMem->MinBufSize = minimum usable buffer size,

in bytes

pSetupMem->MaxBufSize = maximum usable buffer size,

in bytes (-1 means an indeterminately large buffer is acceptable)

pSetupMem->Preferred = preferred transfer buffer size, in bytes

If the Source doesn’t care about the size of any of these specifications, set the field(s) to
TWON_DONTCARE32. This signals the application that any value for that field is OK with the
Source.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session with */
/* application */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET

Capabilities - ICAP_COMPRESSION, ICAP_XFERMECH

7-218 TWAIN 1.9 Specification

Operation Triplets

DG _CONTROL / DAT_STATUS / MSG_GET (from Application to Source Manager)

Call
DSM Entry(pOrigin, NULL, DG CONTROL, DAT_STATUS, MSG _GET, pSourceStatus);

pSourceStatus = A pointer to a TW_STATUS structure.

Valid States
2 through 7

Description

Returns the current Condition Code for the Source Manager.

Application

NULL references the operation to the Source Manager.

Source Manager

Fills pSourceStatus->ConditionCode with its current Condition Code. Then, it will clear its
internal Condition Code so you cannot issue a status inquiry twice for the same error (the
information is lost after the first request).

Return Codes

TWRC_SUCCESS /* This operation nust succeed */
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session with */
/* application */

See Also

Return Codes and Condition Codes (Chapter 10)

TWAIN 1.9 Specification 7-219

Chapter 7

DG _CONTROL / DAT_STATUS / MSG_GET (from Application to Source)

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_STATUS, MSG GET, pSourceStatus);

pSourceStatus = A pointer to a TW_STATUS structure.

Valid States
4 through 7

Description

Returns the current Condition Code for the specified Source.

Application

pDest references a copy of the targeted Source’s identity structure.

Source

Fills pSourceStatus->ConditionCode with its current Condition Code. Then, it will clear its
internal Condition Code so you cannot issue a status inquiry twice for the same error (the
information is lost after the first request).

Return Codes

TWRC_SUCCESS /* This operation nust succeed */
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session with */

/* application */

See Also

Return Codes and Condition Codes (Chapter 10)

7-220 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_USERI NTERFACE, MSG DI SABLEDS,
pUserl nterface);
pUserinterface = A pointer to a TW_USERINTERFACE structure.

Valid States
5only (Transitions to State 4, if successful)

Description
This operation causes the Source’s user interface, if displayed during the DG_CONTROL /
DAT_USERINTERFACE /7 MSG_ENABLEDS operation, to be lowered. The Source is returned
to State 4, where capability negotiation can again occur. The application can invoke this
operation either because it wants to shut down the current session, or in response to the Source
“posting” a MSG_CLOSEDSREQ event to it. Rarely, the application may need to close the
Source because an error condition was detected.

Application
References the same pUserlnterface structure as during the MSG_ENABLEDS operation. This
implies that the application keep a copy of this structure locally as long as the Source is
enabled.
If the application did not display the Source’s built-in user interface, it will most likely invoke
this operation either when all transfers have been completed or aborted
(TW_PENDINGXFERS.Count = 0).

Source

If the Source’s user interface is displayed, it should be lowered. The Source returns to State 4
and is again available for capability negotiation.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session */
/* with application */
TWCC_SEQERROR /* Operation invoked in */
/* invalid state */

See Also

DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ
DG_CONTROL / DAT_USERINTERFACE 7/ MSG_ENABLEDS

Event loop information (in Chapter 3)

TWAIN 1.9 Specification 7-221

Chapter 7

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_USERI NTERFACE, MSG _ENABLEDS,
pUserl nterface);
pUserinterface = A pointer to a TW_USERINTERFACE structure
Valid States
4 only (Transitions to State 5, if successful)
Description

This operation causes three responses in the Source:

» Places the Source into a “ready to acquire” condition. If the application raises the
Source’s user interface (see #2, below), the Source will wait to assert MSG_XFERREADY
until the “GO” button in its user interface or on the device is clicked. If the application
bypasses the Source’s user interface, this operation causes the Source to become
immediately “armed”. That is, the Source should assert MSG_XFERREADY as soon as it
has data to transfer.

» The application can choose to raise the Source’s built-in user interface, or not, using this
operation. The application signals the Source’s user interface should be displayed by
setting pUserinterface->ShowUI to TRUE. If the application does not want the Source’s
user interface to be displayed, or wants to replace the Source’s user interface with one of
its own, it sets pUserinterface->ShowUI to FALSE. If activated, the Source’s user
interface will remain displayed until it is closed by the user or explicitly disabled by the
application (see Note).

» Terminates Source’s acceptance of “set capability” requests from the application.
Capabilities can only be negotiated in State 4 (unless special arrangements are made
using the CAP_EXTENDEDCAPS capability). Values of capabilities can still be inquired
in States 5 through 7.

Note: Once the Source is enabled, the application must begin sending the Source every event
that enters the application’s main event loop. The application must continue to send
the Source events until it disables (MSG_DISABLEDS) the Source. This is true even if
the application chooses not to use the Source’s built-in user interface.

7-222 TWAIN 1.9 Specification

Operation Triplets

Application

Set pUserinterface->ShowUI to TRUE to display the Source’s built-in user interface, or to
FALSE to place the Source in an “armed” condition so that it is immediately prepared to
acquire data for transfer. Set ShowUI to FALSE only if bypassing the Source’s built-in user
interface—that is, only if the application is prepared to handle all user interaction necessary to
acquire data from the selected Source.

Sources are not required to be enabled without showing their User Interface (i.e.
TW_USERINTERFACE.ShowUI = FALSE). If a Source does not support ShowUI = FALSE,
they will continue to be enabled just as if ShowUI = TRUE, but return TWRC_CHECKSTATUS.
The application can check for this Return Code and continue knowing the Source’s User
Interface is being displayed.

Watch the value of pUserinterface->ModalUI after the operation has completed to see if the
Source’s user interface is modal or modeless.

The application must maintain a local copy of pUserlInterface while the Source is enabled.

Windows only—The application should place a handle (hWnd) to the window acting as the
Source’s parent into pUserlnterface->hParent.

Macintosh only—Set pUserlinterface->hParent to NULL.

Note: Application should establish that the Source can supply compatible
ICAP_PIXELTYPEs and ICAP_BITDEPTHSs prior to enabling the Source. The
application must verify that the Source can supply data of a type it can consume. If
this operation fails, the application should notify the user that the device and
application are incompatible due to data type mismatch. If the application diligently
sets SupportedGroups in its identity structure before it tries to open the Source, the
Source Manager will, in the Select Source dialog or through the
MSG_GETFIRST/MSG_GETNEXT mechanism, filter out the Sources that don’t match
these SupportedGroups.

Source

If pUserinterface->ShowUl is TRUE, the Source should display its user interface and wait for
the user to initiate an acquisition. If pUserinterface->ShowUI is FALSE, the Source should
immediately begin acquiring data based on its current configuration (a device that requires the
user to push a button on the device, such as a hand-scanner, will be “armed” by this operation
and will assert MSG_XFERREADY as soon as the Source has data ready for transfer). The
Source should fail any attempt to set a capability value (TWRC_FAILURE /
TWCC_SEQERROR) until it returns to State 4 (unless an exception approval exists via a
CAP_EXTENDEDCAPS agreement).

Set pUserinterface->ModalUl to TRUE if your built-in user interface is modal. Otherwise, set it
to FALSE.

TWAIN 1.9 Specification 7-223

Chapter 7

Note: While the Source’s user interface is raised, the Source is responsible for presenting the
user with appropriate progress indicators regarding the acquisition and transfer
processes unless the application has set CAP_INDICATORS to FALSE. The Source
must also report errors to the user (without regard for the settings of
CAP_INDICATORS and ShowUl, i.e. they may be set to FALSE and errors still must
be reported).

It is strongly recommended that all Sources support being enabled without their User
Interface if the application requests (TW_USERINTERFACE.ShowUI = FALSE). But if
your Source cannot be used without its User Interface, it should enable showing the
Source User Interface (just as if ShowUI = TRUE) but return TWRC_CHECKSTATUS.
All Sources, however, must support the CAP_UICONTROLLABLE. This capability
reports whether or not a Source allows ShowUI = FALSE. An application can use this
capability to know whether the Source-supplied user interface can be suppressed
before it is displayed.

Return Codes

TWRC_SUCCESS

TWRC_CHECKSTATUS /* Source cannot enable */
/* without User Interface */
/* so it enabled with the */

/* User Interface. */
TWRC_FAI LURE
TWCC_BADDEST /* No such Source in-session */
/* with application */
TWCC_LOWEMORY /* Not enough nenory to open */
/* the Source */
TWCC_OPERATI ONERRCOR /* Internal Source error; */
/* handl ed by the Source */
TWCC_SEQERROR /* Operation invoked in */
/* invalid state */

See Also

DG_CONTROL /7 DAT_NULL 7 MSG_CLOSEDSREQ
DG_CONTROL /7 DAT_USERINTERFACE / MSG_DISABLEDS

Capability - CAP_INDICATORS

Event loop information (in Chapter 3)

7-224 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_USERI NTERFACE,
MSG_ENABLEDSUI ONLY, pUserlnterface);
pUserinterface = A pointer to a TW_USERINTERFACE structure.
Valid States
4 only (transitions to State 5, if successful)
Description

This operation is very similar to DG_CONTROL/ DAT_USERINTERFACE/ MSG_ENABLEDS
operation except that no image transfer will take place. This operation is used by applications
that wish to display the source user interface to allow the user to manipulate the sources
current settings for DPI, paper size, etc. but not acquire an image. The ShowUI member of the
TW_USERINTERFACE structure is ignored since this operations only purpose is to display the
source Ul. The other members of the TW_USERINTERFACE structure have the same meaning
as in the DG_CONTROL/ DAT_USERINTERFACE/ MSG_ENABLEDS operation.

This operation has the following effects.

1. The source transitions from state 4 to state 5. The source will display its user interface
dialog but will not have a scan button (unless its only purpose is to preview the image).

2. The application must begin sending the Source every event that enters the applications
main event loop. This mechanism is the same as in the MSG_ENABLEDS operation.

3. When the user hits OK or cancel from the source user interface dialog the source will
transition back to state 4 and return either MSG_CLOSEDSOK or MSG_CLOSEDSREQ
in the TWMessage field of the TW_EVENT structure that the application has passed
along to the source.

TWAIN 1.9 Specification 7-225

Chapter 7

DG_CONTROL / DAT_XFERGROUP / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_XFERGROUP, MSG GET, pXfer G oup);

pXferGroup = A pointer to a TW_UINT32 value.

Valid States
4 through 6

Description

Returns the Data Group (the type of data) for the upcoming transfer. The Source is required to
only supply one of the DGs specified in the SupportedGroups field of pOrigin.

Application

Should have previously (duringa DG_CONTROL / DAT_PARENT / MSG_OPENDSM) set
pOrigin. SupportedGroups to reflect the DGs the application is interested in receiving from a
Source. Since DG_xxxx identifiers are bit flags, the application can perform a bitwise OR of
DG_xxxx constants of interest to build the SupportedGroups field (this is appropriate when
more kinds of data than DG_IMAGE are available).

Note: Version 1.x of the Toolkit defines DG_IMAGE and DG_AUDIO as the sole Data
Groups (DG_CONTROL is masked from any processing of SupportedGroups). Future
versions of TWAIN may define support for other DGs.

Source

Set pXferGroup to the DG_xxxx constant that identifies the type of data that is ready for
transfer from the Source (DG_IMAGE is the only non-custom Data Group defined in TWAIN
version 1.x).

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session with */
/* application */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also
DG_CONTROL / DAT_XFERGROUP / MSG_SET

7-226 TWAIN 1.9 Specification

Operation Triplets

DG_CONTROL / DAT_XFERGROUP / MSG_SET

Call
DSM Entry (pOrigin, pDest, DG _CONTROL, DAT_XFERGROUP,
MBG_SET, pSourceFil eSysten);
pSourceFileSystem = A pointer to a TW_UINT32 structure
Valid States
6 only
Description

The transfer group determines the kind of data being passed from the Source to the
Application. By default a TWAIN Source must default to DG_IMAGE. Currently the only
other data group supported is DG_AUDIO, which is a feature supported by some digital
cameras.

An Application changes the data group in State 6 to indicate that it wants to transfer any audio
data associated with the current image. The transfers follow the typical TWAIN State 6 —

State 7 — State 6 pattern for each audio snippet transferred. When the application is done
transferring audio data it must change back to DG_IMAGE in order to move on to the next
image or to end the transfers and return to State5.

Return Codes

TWRC_SUCCESS
TWRC_FAILURE
TWCC_BADDEST - no such Source in session with application.
TWCC_BADPROTOCOL - capability not supported.
TWCC_SEQERROR - not state 6.

See Also
DG_CONTROL / DAT_XFERGROUP/ MSG_GET

TWAIN 1.9 Specification 7-227

Chapter 7

DG_IMAGE / DAT_CIECOLOR / MSG_GET

7-228

Call

DSM Entry(pOrigin, pDest, DG | MAGE, DAT_Cl ECOLOR,
MSG_GET, pCl ECol or);

pCIEColor = A pointer to a TW_CIECOLOR structure.

Valid States
4 through 6

Description
Background - The DAT_CIECOLOR data argument type is used to communicate the
parametrics for performing a transformation from any arbitrary set of tri-stimulus values into
CIE XYZ color space. Color data stored in this format is more readily manipulated
mathematically than some other spaces. See Appendix A for more information about the
definitions and data structures used to describe CIE color data within TWAIN.
This operation causes the Source to report the currently active parameters to be used in
converting acquired color data into CIE XYZ.

Application
Prior to invoking this operation, the application should establish that the Source can provide
data in CIE XYZ form. This can be determined by invoking a MSG_GET on ICAP_PIXELTYPE.
If TWPT_CIEXYZ is one of the supported types, then these operations are valid. The
application can specify that transfers should use the CIE XYZ space by invoking a MSG_SET
operation on ICAP_PIXELTYPE using a TW_ONEVALUE container structure whose value is
TWPT_CIEXYZ.
No special set up is required. Invoking this operation following the transfer (after the Source is
back in State 6) will guarantee that the exact parameters used to convert the image are reported.

Source

Fill pCIEColor with the current values applied in any conversion of image data to CIE XYZ. If
no values have been set by the application, fill the structure with either the values calculated for
this image or the Source’s default values, whichever most accurately reflect the state of the
Source.

TWAIN 1.9 Specification

Operation Triplets

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support the */
/* CIE descriptors */
TWCC_SEQERROR /* Qperation invoked in invalid */
/* state */

See Also
Capability - ICAP_PIXELTYPE
Appendix A

TWAIN 1.9 Specification 7-229

Chapter 7

DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET

Call

DSM Entry(pOrigin, pDest, DG | MAGE, DAT_EXTI MAGElI NFO,
MSG_GET, pExt | magel nf o) ;

pExtlmagelnfo = A pointer to a TW_EXTIMAGEINFO structure.

Valid States

7 only, after receiving TWRC_XFERDONE

Description

This operation is used by the application to query the data source for extended image
attributes, .e.g. bar codes found on a page. The extended image information will be returned in
a TW_EXTIMAGEINFO structure.

Application
To query extended image information, set the pExtimagelnfo fields as follows:

The Application will allocate memory for the necessary container structure, the source will fill
the values, and then application will free it up.

pExtimagelnfo->Numinfos = Desired number of information;
pExtlmagelnfo->Info[0].InfolD = TWEI_xxxX;
pExtlmagelnfo->Info[1].InfolD = TWEI_xxxx;

Source

If the application requests information that the Source does not recognize, the Source should

put TWRC_INFONOTSUPPORTED in the RetCode field of TW_INFO structure.
pExtimagelnfo->Info[0].RetCode = TWRC_INFONOTSUPPORTED;

If you support the capability, fill in the fields allocating extra memory if necessary. For

example, for TWEI_BARCODEX:

pExtimagelnfo->Info[0].RetCode = TWRC_SUCCESS;
pExtImagelnfo->Info[0].ItemType = TWTY_UINT32;
pExtlmagelnfo->Info[0].Numltems = 1;
pExtlmagelnfo->Info[0].Item = 20;

7-230 TWAIN 1.9 Specification

Operation Triplets

For TWEI_FORMTEMPLATEMATCH:

pExtimagelnfo->Info[0].RetCode = TWRC_SUCCESS;
pExtimagelnfo->Info[0].ItemType = TWTY_STR255;
pExtlmagelnfo->Info[0]. Numltems = 1;

For handle (Application set TWMF_HANDLE),
pExtimagelnfo->Info[0].Item = GlobalAlloc(GHND, sizeof(TW_STR255));

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC _BADPROTOCOL /* Source does not support extended inage */
/* information */
TWCC_SEQERROR /* Not State 7, or in State 7 but TWRC_XFERDONE */
/* has not been received yet */

See Also
Capability ICAP_EXTIMAGEINFO

TWAIN 1.9 Specification 7-231

Chapter 7

DG_IMAGE / DAT_GRAYRESPONSE / MSG_RESET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_GRAYRESPONSE, MSG RESET, pResponse);
pResponse = A pointer to a TW_GRAYRESPONSE structure.

Valid States
4 only

Description
Background - The two DAT_GRAYRESPONSE operations allow the application to specify a
transfer curve that the Source should apply to the grayscale it acquires. This curve should be
applied to the data prior to transfer. The Source should maintain an “identity response curve”
to be used when it is MSG_RESET.
The MSG_RESET operation causes the Source to use its “identity response curve.” The identity
curve causes no change in the values of the captured data when it is applied.

Application
No special action.

Source

Apply the identity response curve to all future grayscale transfers. This means that the Source
will transfer the grayscale data exactly as acquired.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support */
/* grayscal e response curves */
TWCC_SEQERROR /* Qperation invoked in invalid */
/* state */

See Also
DG_IMAGE / DAT_GRAYRESPONSE /7 MSG_SET
Capability - ICAP_PIXELTYPE

7-232 TWAIN 1.9 Specification

Operation Triplets

DG_IMAGE / DAT_GRAYRESPONSE / MSG_SET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_GRAYRESPONSE, MSG SET, pResponse);
pResponse = A pointer to a TW_GRAYRESPONSE structure.

Valid States
4 only

Description
Background - The two DAT_GRAYRESPONSE operations allow the application to specify a
transfer curve that the Source should apply to the grayscale it acquires. This curve should be
applied to the data prior to transfer. The Source should maintain an “identity response curve”
to be used when it is MSG_RESET. This identity curve should cause no change in the values of
the data it is applied to.
This operation causes the Source to transform any grayscale data according to the response
curve specified.

Application
All three elements of the response curve for any given index should hold the same value (the
curve is stored in a TW_ELEMENTS8 which contains three “channels” of data). The Source may
not support this operation. The application should be diligent to examine the return code from
this operation.

Source

Apply the specified response curve to all future grayscale transfers. The transformation should
be applied before the data is transferred.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support */
/* grayscal e response curves */
TWCC_SEQERROR /* Qperation invoked in invalid */
/* state */

See Also
DG_IMAGE / DAT_GRAYRESPONSE /7 MSG_RESET
Capability - ICAP_PIXELTYPE

TWAIN 1.9 Specification 7-233

Chapter 7

DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET

7-234

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_ | MAGEFI LEXFER, MSG_GET, NULL);
This operation acts on NULL data. File information can be set with the DG_CONTROL /
DAT_SETUPFILEXFER / MSG_SET or the DG_CONTROL / DAT_SETUPFILEXFER2 /
MSG_SET operation.

Valid States
6 only (Transitions to State 7, if successful. Remains in State 7 until MSG_ENDXFER
operation.)

Description
This operation is used to initiate the transfer of an image from the Source to the application via
the disk-file transfer mechanism. It causes the transfer to begin.

Application

No special set up or action required. Application should have already invoked the
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET or the DG_CONTROL /
DAT_SETUPFILEXFER2 / MSG_SET operation unless the Source’s default transfer format and
file name (typically, TWAIN.TMP) are acceptable to the application. The application need only
invoke this operation once per image transferred.

Notes: If the application is planning to receive multiple images from the Source while using
the Source’s default file name, the application should plan to pause between transfers
and copy the file just written. The Source will overwrite the file unless it is instructed
to write to a different file.

Applications can specify a unique file for each transfer using DG_CONTROL /
DAT_SETUPFILEXFER / MSG_SET or the DG_CONTROL / DAT_SETUPFILEXFER2
/ MSG_SET operation in State 6 or 5 (and 4, of course).

TWAIN 1.9 Specification

Source

Operation Triplets

Acquire the image data, format it, create any appropriate header information, and write
everything into the file specified by the previous DG_CONTROL / DAT_SETUPFILEXFER /
MSG_SET or the DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET operation, and close
the file.

Handling Possible File Conditions:

If the application did not set conditions up using the DAT_SETUPFILEXFER / MSG_SET
operation during this session, use your own default file name, file format, and location
for the created file.

If the specified file already exists, overwrite the file in place.
If the specified file does not exist, create the file.

If the specified file exists and cannot be accessed, or a system error occurs while writing
the file, report the error to the user and return TWRC_FAILURE with
TWCC_OPERATIONERROR. Stay in State 6. The file contents are invalid. The image
whose transfer failed is still a pending transfer so do not decrement
TW_PENDINGXFERS.Count.

If the file is written successfully, return TWRC_XFERDONE.
If the user cancels the transfer, return TWRC_CANCEL.

Return Codes

TWRC_XFERDONE
TWRC_CANCEL
TWRC_FAI LURE

See Also

TWCC_BADDEST /* No such Source in-session */
/* with application */
TWCC_OPERATI ONERRCOR /* Failure in the Source -- */
/* transfer invalid */
TWCC_SEQERROR /* Operation invoked in */
/* invalid state */

DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_IMAGE / DAT_IMAGEINFO / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET,

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT

TWAIN 1.9 Specification 7-235

Chapter 7

DG_IMAGE / DAT_IMAGEINFO / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_| MAGEI NFO, MSG_CET, pl magel nf o) ;
plmagelnfo = A pointer to a TW_IMAGEINFO structure.

Valid States
6 and 7 (State 7 only after receiving TWRC_XFERDONE)

Description
When called in State 6, this operation provides to the application general image description
information about the image about to be transferred.
When called in State 7, this operation provides the Application with specific image description
information about the current image that has just been transferred. It is important during a
Memory transfer to call this triplet only after TWRC_XFERDONE is received, since that is the
only time the Source will know all the final image information.
The same data structure type is used regardless of the mechanism used to transfer the image
(Native, Disk File, or Buffered Memory transfer).

Application

The Application can use this operation to check the parameters of the image before initiating
the transfer during State 6, or to clarify image parameters during State 7 after the transfer is
complete.

Applications may inform Sources that they accept -1 value for ImageHeight/ImageWidth by
setting the ICAP_UNDEFINEDIMAGESIZE capability to TRUE.

Should the Application decide to invoke any Source features that allow the image description
information to change during scanning (such as ICAP_UNDEFINEDIMAGESIZE) and still
wish to transfer in Buffered memory mode, a DG_CONTROL/DAT_IMAGEINFO/MSG_GET
call must be made in State 7 after receiving TWRC_XFERDONE to properly interpret the image
data. This is not the default behavior of the Source.

Note that the speed at which the Application supplies buffers may determine the scanning
speed.

7-236 TWAIN 1.9 Specification

Operation Triplets

Source

During State 6 - Fills in all fields in plmagelnfo. All fields are filled in as you would expect
with the following exceptions:
XResolution or YResolution
Set to -1 if the device creates data with no inherent resolution (such as a digital camera).

ImageWidth

Set to -1 if the image width to be acquired is unknown (such as when using a hand-held
scanner and dragging left-to-right) , and the Application has set
ICAP_UNDEFINEDIMAGESIZE to TRUE. In this case the Source must transfer the
image in tiles.

ImagelLength

ImageLength—Set to -1 if the image length to be acquired is unknown (such as when
using a hand-held scanner and dragging top-to-bottom), and the Application has set
ICAP_UNDEFINEDIMAGESIZE to TRUE.

During State 7 - Fills in all fields in plmagelnfo. All fields are filled in as during State 6, except
ImageWidth and ImagelLength MUST be valid. Source shall return TWRC_SEQERROR if call is
made before TWRC_XFERDONE is sent.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session with */
/* application */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_IMAGEFILEXFER /7 MSG_GET
DG_IMAGE /7 DAT_IMAGEMEMXFER / MSG_GET
DG_IMAGE 7 DAT_IMAGENATIVEXFER /7 MSG_GET

Capabilities - ICAP_BITDEPTH, ICAP_COMPRESSION, ICAP_PIXELTYPE,
ICAP_PLANARCHUNKY, ICAP_XRESOLUTION, ICAP_YRESOLUTION

TWAIN 1.9 Specification 7-237

Chapter 7

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_| MAGELAYOQUT, MsSG GET, plnmagelLayout);

plmagelLayout = A pointer to a TW_IMAGELAYOUT structure.

Valid States
4 through 6

Description

The DAT_IMAGELAYOUT operations control information on the physical layout of the image
on the acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a
photograph, etc.).

The MSG_GET operation describes both the size and placement of the image on the original
“page”. The coordinates on the original page and the extents of the image are expressed in the
unit of measure currently negotiated for ICAP_UNITS (default is inches).

The outline of the image is expressed by a “frame.” The Left, Top, Right, and Bottom edges of
the frame are stored in plmagelLayout->Frame. These values place the frame within the
original page. All measurements are relative to the page’s “upper-left” corner. Define “upper-
left” by how the image would appear on the computer’s screen before any rotation or other
position transform is applied to the image data. This origin point will be apparent for most
Sources (although folks working with satellites or radio telescopes may be at a bit of a loss).

Finally plmageLayout optionally includes information about which frame on the page, which
page within a document, and which document the image belongs to. These fields were
included mostly for future versions which could merge more than one type of data. A more
immediate use might be for an application that needs to keep track of which frame on the page
an image came from while acquiring from a Source that can supply more than one image from
the same page at the same time. The information in this structure always describes the current
image. To set multiple frames for any page simultaneously, reference ICAP_FRAMES.

Application

No special set up or action required, unless the current units of measure are unacceptable. In
that case, the application must re-negotiate ICAP_UNITS prior to invoking this operation.
Remember to do this in State 4—the only state wherein capabilities can be set or reset.

Beyond supplying possibly interesting position information on the image to be transferred, the
application can use this structure to constrain the final size of the image and to relate the image
within a series of pages or documents (see the DG_IMAGE / DAT_IMAGELAYOUT /
MSG_SET operation).

7-238 TWAIN 1.9 Specification

Operation Triplets

Source

Fill all fields of plmageLayout. Most Sources will set FrameNumber, PageNumber, and
DocumentNumber to 1.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session */
/* with application */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE /7 DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE /7 DAT_IMAGELAYOUT / MSG_RESET
DG_IMAGE 7/ DAT_IMAGELAYOUT / MSG_SET

Capabilities - Many such as ICAP_FRAMES, ICAP_MAXFRAMES, ICAP_UNITS

TWAIN 1.9 Specification 7-239

Chapter 7

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT

Call
DSM Entry(pOrigin, pDest, DG |MAGE, DAT | MAGELAYOUT, MSG_GETDEFAULT,
pl magelLayout) ;
plmagelLayout = A pointer to a TW_IMAGELAYOUT structure.

Valid States
4 through 6

Description
The DAT_IMAGELAYOUT operations control information on the physical layout of the image
on the acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a
photograph, etc.).
This operation returns the default information on the layout of an image. This is the size and
position of the image that will be acquired from the Source if the acquisition is started with the
Source (and the device it is controlling) in its power-on state (for instance, most flatbed
scanners will capture the entire bed).

Application
No special set up or action required.

Source

Fill in all fields of plmageLayout with the device’s power-on origin and extents. Most Sources
will set FrameNumber, PageNumber, and DocumentNumber to 1.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session */
/* with application */
TWCC_SEQERROR /* Qperation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Capabilities - ICAP_FRAMES, ICAP_MAXFRAMES, ICAP_UNITS

7-240 TWAIN 1.9 Specification

Operation Triplets

DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_| MAGELAYQUT, MsSG _RESET, plmagelayout);
plmagelLayout = A pointer to a TW_IMAGELAYOUT structure.
Valid States
4 only
Description
The DAT_IMAGELAYOUT operations control information on the physical layout of the image
on the acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a
photograph, etc.).
This operation sets the image layout information for the next transfer to its default settings.
Application
No special set up or action required. Ascertain the current settings of ICAP_ORIENTATION,
ICAP_PHYSICALWIDTH, and ICAP_PHYSICALHEIGHT if you don’t already know this
device’s power-on default values.
Source

Reset all the fields of the structure pointed at by plmagelLayout to the device’s power-on origin
and extents. There is an implied resetting of ICAP_ORIENTATION, ICAP_PHYSICALWIDTH,
and ICAP_PHYSICALHEIGHT to the device’s power-on default values.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session */
/* with application */
TWCC_SEQERROR /* Qperation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Capabilities - ICAP_FRAMES, ICAP_MAXFRAMES, ICAP_UNITS

TWAIN 1.9 Specification 7-241

Chapter 7

DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_| MAGELAYQUT, MSG _SET, plnmagelLayout);

plmagelLayout = A pointer to a TW_IMAGELAYOUT structure.

Valid States
4 only

Description

The DAT_IMAGELAYOUT operations control information on the physical layout of the image
on the acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a
photograph, etc.).

This operation sets the layout for the next image transfer. This allows the application to specify
the physical area to be acquired during the next image transfer (for instance, a frame-based
application would pass to the Source the size of the frame the user selected within the
application—the helpful Source would present a selection region already sized to match the
layout frame size).

If the application and Source have negotiated one or more frames through ICAP_FRAMES, the
frame set with this operation will only persist until the transfer following this one. Otherwise,
the frame will persist as the current frame for the remainder of the session (unless superseded
by negotiation on ICAP_FRAMES or another operation on DAT_IMAGELAYOUT overrides it).

The application writer should note that setting these values is a request. The Source should
first try to match the requested values exactly. Failing that, it should approximate the
requested values as closely as it can—extents of the approximated frame should at least equal
the requested extents unless the device cannot comply. The Source should return
TWRC_CHECKSTATUS if the actual values set in plmageLayout->Frame are greater than or
equal to the requested values in both extents. If one or both of the requested values exceed the
Source’s available values, the Source should return TWRC_FAILURE with
TWCC_BADVALUE. The application should check for these return codes and perform a
MSG_GET to verify that the values set by the Source are acceptable. The application may
choose to cancel the transfer if Source could not set the layout information closely enough to the
requested values.

Application

Fill in all fields of plmagelLayout. Especially important is the Frame field whose values are
expressed in ICAP_UNITS. If the application doesn’t care about one or more of the other fields,
be sure to set them to -1 to prevent confusion. If the application only cares about the extents of
the Frame, and not about the origin on the page, set the Frame.Top and Frame.Left to zero.
Otherwise, the application can specify the location on the page where the Source should begin
acquiring the image, in addition to the extents of the acquired image.

7-242 TWAIN 1.9 Specification

Operation Triplets

Source

Use the values in plmagelLayout as the Source’s current image layout information. If you are
unable to set the device exactly to the values requested in the Frame field, set them as closely as
possible, always snapping to a value that will result in a larger frame, and return
TWRC_CHECKSTATUS to the application.

If the application has set Frame.Top and Frame.Left to a non-zero value , set the origin for the
image to be acquired accordingly. If possible, the Source should consider reflecting these
settings in the user interface when it is raised. For instance, if your Source presents a pre-scan
image, consider showing the selection region in the proper location and with the proper size
suggested by the settings from this operation.

If the requested values exceed the maximum size the Source can acquire, set the
plmageLayout->Frame values used within the Source to the largest extent possible within the
axis of the offending value. Return TWRC_FAILURE with TWCC_BADVALUE.

Return Codes
TWRC_SUCCESS

TWRC_CHECKSTATUS /* Source approxi mated the requested*/
/* val ues */
TWRC_FAI LURE
TWCC_BADDEST /* No such Source in-session */
/* with application */
TWCC_BADVALUE /* Specified Layout values illegal */
/* for Source */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE 7/ DAT_IMAGELAYOUT / MSG_RESET

Capabilities - ICAP_FRAMES, ICAP_MAXFRAMES, ICAP_UNITS

TWAIN 1.9 Specification 7-243

Chapter 7

DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_| MAGEMEMXFER, MSG GET, plmageMenXfer);

plmageMemXfer = A pointer to a TW_IMAGEMEMXFER structure.

Valid States

6 and 7 (Transitions to State 7, if successful. Remains in State 7 until MSG_ENDXFER
operation.)

Description

This operation is used to initiate the transfer of an image from the Source to the application via
the Buffered Memory transfer mechanism.

This operation supports the transfer of successive blocks of image data (in strips or, optionally,
tiles) from the Source into one or more main memory transfer buffers. These buffers (for strips)
are allocated and owned by the application. For tiled transfers, the source allocates the buffers.
The application should repeatedly invoke this operation while TWRC_SUCCESS is returned by
the Source.

Application

The application will allocate one or more memory buffers to contain the data being transferred
from the Source. The application may allocate enough buffer space to contain the entire image
being transferred or, more commonly, use the transfer buffer(s) as a temporary holding area
while the complete image is assembled elsewhere (on disk, for instance).

The size of the allocated buffer(s) should be homogeneous (don’t change buffer sizes during
transfer). The size the application selects should be based on the information returned by the
Source from the DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation. The
application should do its best to allocate transfer buffers of the size “preferred” by the Source.
This will enhance the chances for superior transfer performance. The buffer size must be
between MinBufSize and MaxBufSize as reported by the Source. Further, the buffers must
contain an even number of bytes. Memory buffers must be double-word aligned and should be
padded with zeros at the end of each raster line.

If the application sets up buffers that are either too small or too large, the Source will fail the
operation returning TWRC_FAILURE/TWCC_BADVALUE.

Once the buffers have been set up, the application should fill
plmageMemXfer->Memory.Length with the actual size (in bytes) of each memory buffer
(which are, of course, all the same size).

Windows only—The buffers should be allocated in global memory.

Source

Prior to writing the first buffer, check pImageMemXfer->Memory.Length for the size of the
buffer(s) the application has allocated. If the size lies outside the maximum or minimum buffer
size communicated to the application during the DG_CONTROL / DAT_SETUPMEMXFER /
MSG_GET operation, return TWRC_FAILURE/TWCC_BADVALUE and remain in State 6.

7-244 TWAIN 1.9 Specification

Operation Triplets

If the buffer is of an acceptable size, fill in all fields of pImageMemXfer except
plmageMemXfer->Memory. The Source must write the data block into the buffer referenced by
plmageMemXfer->Memory.TheMem. Store the actual number of bytes written into the buffer
in pImageMemXfer->BytesWritten. Compressed and tiled data effects how the Source fills in
these values.

Return TWRC_SUCCESS after successfully writing each buffer. Return TWRC_CANCEL if the
Source needs to terminate the transfer before the last buffer is written (as when the user aborts
the transfer from the Source’s user interface). Return TWRC_XFERDONE to signal that the last
buffer has been written. Following completion of the transfer, either after all the data has been
written or the transfer has been canceled, remain in State 7 until explicitly transitioned back to
State 6 by the application (DG_CONTROL / DAT_PENDINGXFERS /7 MSG_ENDXFER).

If TWRC_FAILURE occurred on the first buffer, the session remains in State 6. If failing on a
subsequent buffer, the session remains in State 7. The strip whose transfer failed is still
pending.

Notes on Memory Usage: Following a canceled transfer, the Source should dispose of the
image that was being transferred and assure that any temporary variable and local buffer
allocations are eliminated. The Source should be wary of allocating large temporary buffers or
variables. Doing so may disrupt or even disable the transfer process. The application should
be aware of the possible needs of the Source to allocate such space, however, and consider
allocating all large blocks of RAM needed to support the transfer prior to invoking this
operation. This may be especially important for devices that create image transfers of
indeterminate size—such as hand-held scanners.

Return Codes

TWRC_SUCCESS /* Source done transferring */
/* the specified block */
TWRC_XFERDONE /* Source done transferring */
/* the specified inage */
TWRC_CANCEL /* User aborted the transfer from?*/
/* the Source */
TWRC_FAI LURE
TWCC_BADDEST /* No such Source in-session */
/*wi th application */
TWCC_BADVALUE /* Size of buffer did not */
/* match TW SETUPMEMXFER */
TWCC_OPERATI ONERRCOR /* Failure in the Source-- */
/* transfer invalid */
TWCC_SEQERROR /* Operation invoked in */
/* invalid state */

See Also

DG_CONTROL 7 DAT_SETUPMEMXFER / MSG_GET
DG_IMAGE / DAT_IMAGEINFO / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

Capabilities - ICAP_COMPRESSION, ICAP_TILES, ICAP_XFERMECH

TWAIN 1.9 Specification 7-245

Chapter 7

DG _IMAGE / DAT_IMAGENATIVEXFER / MSG_GET
Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_| MAGENATI VEXFER, MSG GET, pHandle);
pHandle = A pointer to a variable of type TW_UINT32.

Windows - This 32 bit integer is a handle variable to a DIB (Device Independent Bitmap)
located in memory.

Macintosh - This 32-bit integer is a handle to a Picture (a PicHandle). It is a QuickDraw picture
located in memory.

Valid States

6 only (Transitions to State 7, if successful. Remains in State 7 until MSG_ENDXFER
operation).

Description

Causes the transfer of an image’s data from the Source to the application, via the Native
transfer mechanism, to begin. The resulting data is stored in main memory in a single block.
The data is stored in Picture (PICT) format on the Macintosh and as a device-independent
bitmap (DIB) under Microsoft Windows. The size of the image that can be transferred is
limited to the size of the memory block that can be allocated by the Source.

Note: This is the default transfer mechanism. All Source’s support this mechanism. The
Source will use this mechanism unless the application explicitly negotiates a different
transfer mechanism with ICAP_XFERMECH.

Application

The application need only invoke this operation once per image. The Source allocates the
largest block available and transfers the image into it. If the image is too large to fit, the Source
may resize the image. Read the DIB header or check the picFrame in the Picture to determine if
this happened. The application is responsible for deallocating the memory block holding the
Native-format image.

Windows only—Set pHandle pointing to a handle to a device-independent bit map (DIB) in
memory. The Source will allocate the image buffer and return the handle to the address
specified..

Macintosh only—Set pHandle pointing to a handle to a Picture in memory. The Source will
allocate the image buffer at the memory location referenced by the handle.

7-246 TWAIN 1.9 Specification

Operation Triplets

Note: This odd combination of pointer and handle to reference the image data block was
used to assure that the allocated memory object would be relocatable under Microsoft
Windows, Macintosh, and UNIX. A handle was required for this task on both the
Macintosh and under Microsoft Windows; though pointers are inherently relocatable
under UNIX. Rather than disturb the entry points convention that the data object is
always referenced by a pointer, it was decided to have that pointer reference the
relocatable handle. A handle in UNIX is typecast to a pointer.

Source

Allocate a single block of memory to hold the image data and write the image data into it using
the appropriate format for the operating environment. The source must assure that the
allocated block will be accessible to the application. Place the handle of the allocated block in
the TW_UINT32 pointed to by pHandle.

Microsoft Windows: Format the data block as a DIB. Use GlobalAlloc or equivalent under
windows. Under 16 bit Microsoft Windows, place the handle in the low word of the
TW_UINT32. The following assignment will work in either Win16 or Win32:

(HGLOBAL FAR *) pHandle = hDIB;

See the Windows SDK documentation under Structures: BIMAPINFO, BITMAPINFOHEADER,
RGBQUAD. See also “DIBs and their use” by Ron Gery, in the Microsoft Development Library
(MSDN CD).

Notes:

* Do not use BITMAPCOREINFO or BIMAPCOREHEADER as these are for OS/2
compatibility only.

» Always follow the BITMAPINFOHEADER with the color table and only save 1, 4, or 8
bit DIBs

» Color table entries are RGBQUADSs, which are stored in memory as BGR not RGB.
» For 24 bit color DIBs, the “pixels” are also stored in BGR order, not RGB.

» DIBs are stored ‘upside-down’ - the first pixel in the DIB is the lower-left corner of the
image, and the last pixel is the upper-right corner.

» DIBs can be larger than 64K, but be careful, a 24 bit pixel can straddle a 64K boundary!

» Pixelsin 1, 4, and 8 bit DIBs are “always” color table indices, you must index through the
color table to determine the color value of a pixel.

Macintosh: Format the data block as a PICT, preferably using standard system calls.

TWAIN 1.9 Specification 7-247

Chapter 7

Microsoft Windows and Macintosh: If the allocation fails, it is recommended that you allow the
user the option to re-size the image to fit within available memory or to cancel the transfer
(assuming that the Source user interface is displayed). If the user chooses to cancel the transfer,
return TWRC_CANCEL. If the user wants to re-size the image, the Source might choose to
blindly crop the image, clip a selection region to the maximum supported size for the current
memory configuration, or allow the user to re-acquire the image altogether. The user will
usually feel more in control if you provide one or both of the last two options, but the first may
make the most sense for your Source.

If the allocation fails and the image cannot be clipped, return TWRC_FAILURE and remain in
State 6. Set the pHandle to NULL. The image whose transfer failed is still pending transfer.
Do not decrement TW_PENDINGXFERS.Count.

Return Codes

TWRC_XFERDONE /* Source done transferring the */
/* specified bl ock */
TWRC_CANCEL /* User aborted the transfer */
/* within the Source */
TWRC_FAI LURE
TWCC_BADDEST /* No such Source in session */
/* with application */
TWCC_LOWEMORY /* Not enough nenory for */
/* image--cannot crop to fit */
TWCC_OPERATI ONERROR /* Failure in the Source-- */
/* transfer invalid */
TWCC_SEQERROR /* Qperation invoked in */
/* invalid state */

See Also

DG_IMAGE / DAT_IMAGEINFO /7 MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

Capability - ICAP_XFERMECH

7-248 TWAIN 1.9 Specification

Operation Triplets

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_JPEGCOVWPRESSI ON, MSG GET, pConpDat a);

pCompData = A pointer to a TW_JPEGCOMPRESSION structure.

Valid States
4 through 6

Description

Causes the Source to return the parameters that will be used during the compression of data
using the JPEG algorithms.

All the information that is reported by the MSG_GET operation will be available in the header
portion of the JPEG data. Transferring JPEG-compressed data through memory buffers is
slightly different than other types of buffered transfers. The difference is that the JPEG-
compressed image data will be prefaced by a block of uncompressed information—the JPEG
header. This header information contains all the information that is returned from the
MSG_GET operation. The compressed image information follows the header. The Source
should return the header information in the first transfer. The compressed image data will then
follow in the second through the final buffer. If the application is allocating the buffers, it
should assure that the buffer size for transfer of the header is large enough to contain the
complete header.

Application
The application allocates the TW_JPEGCOMPRESSION structure.

Source

Fill pPCompData with the parameters that will be applied to the next JPEG-compression
operation. The Source must allocate memory for the contents of the pointer fields pointed to
within the structure (i.e. QuantTable, HuffmanDC, and HuffmanAC).

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support JPEG */
/* data conpression */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

Capability - ICAP_COMPRESSION

TWAIN 1.9 Specification 7-249

Chapter 7

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT

Call
DSM Entry(pOrigin, pDest, DG |MAGE, DAT_JPEGCOMPRESSI ON, MSG_GETDEFAULT,
pConpDat a) ;
pCompData = A pointer to a TW_JPEGCOMPRESSION structure.
Valid States
4 through 6
Description
Causes the Source to return the power-on default values applied to JPEG-compressed data
transfers.
Application
The application allocates the TW_JPEGCOMPRESSION structure.
Source

Fill in pCompData with the power-on default values. The Source must allocate memory for the
contents of the pointer fields pointed to within the structure (i.e. QuantTable, HuffmanDC and
HuffmanAC). The Source should maintain meaningful default values.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support JPEG */
/* data conpression */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

Capabilities - ICAP_COMPRESSION and ICAP_JPEGQUALITY

7-250 TWAIN 1.9 Specification

Operation Triplets

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_JPEGCOMPRESSI ON, MSG RESET,
pConpDat a) ;
pCompData = A pointer to a TW_JPEGCOMPRESSION structure.
Valid States
4 only
Description
Return the Source to using its power-on default values for JPEG-compressed transfers.
Application
No special action. May want to perform a MSG_GETDEFAULT if you're curious what the new
values might be.
Source

Use your power-on default values for all future JPEG-compressed transfers. The Source should
maintain meaningful default values for all parameters.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support JPEG */
/* data conpression */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

Capabilities - ICAP_COMPRESSION and ICAP_JPEGQUALITY

TWAIN 1.9 Specification 7-251

Chapter 7

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

7-252

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_JPEGCOVPRESSI ON, MSG _SET, pConpDat a);

pCompData = A pointer to a TW_JPEGCOMPRESSION structure.

Valid States
4 only

Description

Allows the application to configure the compression parameters to be used on all future JPEG-
compressed transfers during the current session. The application should have already
established that the requested values are supported by the Source.

Application

Fill pPCompData. Write TWON_DONTCARE16 into the numeric fields that don’t matter to the
application. Write NULL into the table fields that should use the default tables as defined by
the JPEG specification.

Source

Adopt the requested values for use with all future JPEG-compressed transfers. If a value does
not exactly match an available value, match the value as closely as possible and return
TWRC_CHECKSTATUS. If the value is beyond the range of available values, clip to the
nearest value and return TWRC_FAILURE/TWCC_BADVALUE.

Return Codes

TWRC_SUCCESS
TWRC_CHECKSTATUS
TWRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support JPEG */
/* data conpression */
TWCC_BADVALUE /* illegal value specified */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET

Capabilities - ICAP_COMPRESSION and ICAP_JPEGQUALITY

TWAIN 1.9 Specification

Operation Triplets

DG_IMAGE / DAT_PALETTES / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG |MAGE, DAT_PALETTE8, MSG GET, pPalette);

pPalette = A pointer to a TW_PALETTES structure.

Valid States
4 through 6

Description

This operation causes the Source to report its current palette information. The application
should assure that the Source can provide palette information by invoking a MSG_GET
operation on ICAP_PIXELTYPE and checking for TWPT_PALETTE. If this pixel type has not
been established as the type to be used for future acquisitions, the Source should respond with
its default palette.

To assure that the palette information is wholly accurate, the application should invoke this
operation immediately after completion of the image transfer. The Source may perform palette
optimization during acquisition of the data and the palette it reports before the transfer will
differ from the one available afterwards.

(In general, the DAT_PALETTES operations are specialized to deal with 8-bit data, whether
grayscale or color (8-bit or 24-bit). Most current devices provide data with this bit depth.
These operations allow the application to inquire a Source’s support for palette color data and
set up a palette color transfer. See Chapter 8 for the definitions and data structures used to
describe palette color data within TWAIN.)

Application

The application should allocate the pPalette structure for the Source.

Source

Fill pPalette with the current palette. If no palette has been specified or calculated, use the
Source’s default palette (which may coincidentally be the current or default system palette).

TWAIN 1.9 Specification 7-253

Chapter 7

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support */
/* palette color transfers */
TWCC_SEQERROR /* Qperation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT
DG_IMAGE / DAT_PALETTE8 / MSG_RESET
DG_IMAGE / DAT_PALETTE8 /7 MSG_SET

Capability - ICAP_PIXELTYPE

7-254 TWAIN 1.9 Specification

Operation Triplets

DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_PALETTE8, MSG GETDEFAULT, pPalette);
pPalette = A pointer to a TW_PALETTES structure.
Valid States
4 through 6
Description
This operation causes the Source to report its power-on default palette.
Application
The application should allocate the pPalette structure for the Source.
Source

Fill pPalette with the default palette.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support
/* palette color transfers
TWCC_SEQERROR /* Operation invoked in invalid
/* state

See Also

DG_IMAGE / DAT_PALETTES / MSG_GET
DG_IMAGE / DAT_PALETTES / MSG_RESET
DG_IMAGE / DAT_PALETTES / MSG_SET

Capability - ICAP_PIXELTYPE

TWAIN 1.9 Specification

*/
*/
*/

7-255

Chapter 7

DG_IMAGE / DAT_PALETTE8 / MSG_RESET

7-256

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_PALETTE8, MSG RESET, pPalette);
pPalette = A pointer to a TW_PALETTES structure.

Valid States
4 only

Description
This operation causes the Source to dispose of any current palette it has and to use its default
palette for the next palette transfer. A Source that always performs palette optimization may
not use the default palette for the next transfer, but should dispose of its current palette and
adopt the default palette for the moment, anyway. The application can check the actual palette
information by invoking a MSG_GET operation immediately following the image transfer.

Application
The application should allocate the pPalette structure for the Source.

Source

Fill pPalette with the default palette and use the default palette for the next palette transfer.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support */
/* palette color transfers */
TWCC_SEQERROR /* COperation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_PALETTES / MSG_GET
DG_IMAGE / DAT_PALETTES / MSG_GETDEFAULT
DG_IMAGE / DAT_PALETTES / MSG_SET

Capability - ICAP_PIXELTYPE

TWAIN 1.9 Specification

Operation Triplets

DG_IMAGE / DAT_PALETTES / MSG_SET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_PALETTE8, MSG_SET, pPalette);
pPalette = A pointer to a TW_PALETTES structure.

Valid States
4 only

Description
This operation requests that the Source adopt the specified palette for use with all subsequent
palette transfers. The application should be careful to supply a palette that matches the bit
depth of the Source. The Source is not required to adopt this palette. The application should be
careful to check the return value from this operation.

Application
Fill pPalette with the desired palette. If writing grayscale information, write the same data into
the Channell, Channel2, and Channel3 fields of the Colors array. If NumColors != 256, fill the
unused array elements with minimum (“black™) values.

Source

The Source should not return TWRC_SUCCESS unless it will actually use the requested palette.
The Source should not modify the palette in any way until the transfer is complete. The palette
should be used for all remaining palette transfers for the duration of the session.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support */
/* palette color transfers */
TWCC_SEQERROR /* COperation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_PALETTES / MSG_GET
DG_IMAGE / DAT_PALETTES / MSG_GETDEFAULT
DG_IMAGE / DAT_PALETTES / MSG_RESET

Capability - ICAP_PIXELTYPE

TWAIN 1.9 Specification 7-257

Chapter 7

DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_RGBRESPONSE, MSG RESET, pResponse);
pResponse = A pointer to a TW_RGBRESPONSE structure.
Valid States
4 only
Description
Causes the Source to use its “identity” response curves for future RGB transfers. The identity
curve causes no change in the values of the captured data when it is applied. (Note that
resetting the curves for RGB data does not reset any MSG_SET curves for other pixel types).
Note: The DAT_RGBRESPONSE operations allow the application to specify the transfer
curves that the Source should apply to the RGB data it acquires. The Source should
not support these operations unless it can provide data of pixel type TWPT_RGB. The
Source need not maintain actual “identity response curves” for use with the
MSG_RESET operation—once reset, the Source should transfer the RGB data as
acquired from the Source. The application should be sure that the Source supports
these operations before invoking them. The operations should only be invoked when
the active pixel type is RGB (TWPT_RGB). See Chapter 8 for information about the
definitions and data structures used to describe the RGB response curve within
TWAIN.
Application
No special action.
Source

Apply the identity response curve to all future RGB transfers. This means that the Source will
transfer the RGB data exactly as acquired from the device.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support RGB */
/* response curves */
TWCC_BADVALUE /* Current pixel type is not */
/* TWPT_RGB */
TWCC_SEQERROR /* Qperation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_RGBRESPONSE / MSG_SET
Capability - ICAP_PIXELTYPE

7-258 TWAIN 1.9 Specification

Operation Triplets

DG_IMAGE / DAT_RGBRESPONSE / MSG_SET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_RGBRESPONSE, MSG SET, pResponse);

pResponse = A pointer to a TW_RGBRESPONSE structure.

Valid States
4 only

Description

Causes the Source to transform any RGB data according to the response curves specified by the
application.

Application

Fill all three elements of the response curve with the response curve data you want the Source
to apply to future RGB transfers. The application should consider writing the same values into
each element of the same index to minimize color shift problems.

The Source may not support this operation. The application should ensure that the current
pixel type is TWPT_RGB and examine the return code from this operation.

Source

Apply the specified response curves to all future RGB transfers.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support color */
/* response curves */
TWCC_BADVALUE /* Current pixel type is not RGB */
TWCC_SEQERROR /* Qperation invoked in invalid */
/* state */

See Also
DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET
Capability - ICAP_PIXELTYPE

TWAIN 1.9 Specification 7-259

Chapter 7

7-260 TWAIN 1.9 Specification

Data Types and Data Structures

Chapter Contents

Naming Conventions 261
Platform Dependent Definitions and Typedefs 264
Definitions of Common Types 265
Data Structure Definitions 266
Extended Image Information Definitions 316
Data Argument Types that Don’t Have Associated TW_ Structures 329
Constants 330

TWAIN defines a large number of data types and structures. These are all defined in the
TWAIN.H file that is shipped as part of this toolkit. The file is written in C so you will need to
modify the syntax if you develop your application or Source in some other language.

Naming Conventions

Data Structures, Variables, Pointers and Handles

Data structures referenced by pData parameter in DSM_Entry calls

Are prefixed by TW_ and followed by a descriptive name, in upper case. The name
typically matches the call’s DAT parameter.

Example: TW_USERINTERFACE

Fields in data structures (not containing pointers or handles)
Typically, begin with a capital letter followed by mixed upper and lower case letters.

Example: The MinBufSize, MaxBufSize, and Preferred fields in which are in the
TW_SETUPMEMXFER structure.

Fields in data structures that contain pointers or handles

Name starts with lower case “p” or “h” for pointer or handle followed by a typical field
name with initial capital then mixed case characters.

Example: pData, hContainer

TWAIN 1.9 Specification 8-261

Chapter 8

Constants and Types

General-use constants
Are prefixed by TWON _ followed by the description of the constant’s meaning.
Example: TWON_ICONID, TWON_ARRAY

Specific-use constants

Are prefixed with TWxx_ where xx are two letters identifying the group to which the
constant belongs.

Example: TWTY_INT16, TWTY_STR32 are constants of the group “TW Types”

Common data types

Rather than use the int, char, long, etc. types with their variations between compilers,
TWAIN defines a group of types that are used to cast each data item used by the protocol.
Types are prefixed and named exactly the same as TWAIN data structures, TW_ followed
by a descriptive name, all in upper case characters.

Example: TW_UINT32, TW_HANDLE

8-262 TWAIN 1.9 Specification

Data Types and Data Structures

Custom Constants

Applications and Sources may define their own private (custom) constant identifiers for any
existing constant group by assigning the constant a value greater than or equal to 256. They
may also define any new desired custom constant group. The consuming entity should check
the originating entity’s TW_IDENTITY.ProductName when encountering a constant value
greater than or equal to 256 to see whether it can be recognized as a custom constant. Sources
and applications should not assume that all entities will have such error checking built in,
however.

The following are operation identifiers:

Data Groups Prefixed with DG _
Data Argument Types Prefixed with DAT _
Messages Prefixed with MSG_
Return codes Prefixed with TWRC _
Condition codes Prefixed with TWCC _
General capabilities Prefixed with CAP_

Image-specific capabilities Prefixed with ICAP_
Audio-specific capabilities Prefixed with ACAP_

As a general note, whenever the application or the Source allocates a TWAIN data structure, it
should fill all the fields it is instructed to fill and write the default value (if one is specified) into
any field it is not filling. If no default is specified, fill the field with the appropriate
TWON_DONTCAREXxx constant where xx describes the size of the field in bits (bytes, in the
case of strings). The TWON_ constants are described at the end of this chapter and defined in
the TWAIN.H file.

Some fields return a value of -1 when the data to be returned is ambiguous or unknown.
Applications and Sources must look for these special cases, especially when allocating memory.
Examples of Fields with -1 values are found in TW_PENDINGXFERS (Count),
TW_SETUPMEMXFER (MaxBufSize) and TW_IMAGEINFO (ImageWidth and ImageLength).

The remainder of this chapter lists the defined data types and data structures. Most of the
constants are also listed. However, refer to the TWAIN.H file for more explanation about each
constant and to see the lengthy list of country constants which are not duplicated here.

TWAIN 1.9 Specification 8-263

Chapter 8

Platform Dependent Definitions and Typedefs

On Windows
typedef HANDLE TW_HANDLE;
typedef LPVOID TW_MEMREF,;

On Macintosh

#define PASCAL pascal

#define FAR

typedef Handle TW_HANDLE;
typedef char *TW_MEMREF,;

8-264 TWAIN 1.9 Specification

Data Types and Data Structures

Definitions of Common Types

String types

typedef unsigned char
typedef unsigned char
typedef unsigned char
typedef unsigned char
typedef unsigned char
typedef wchar _t

TW_STR32[34], FAR*pTW_STR32;
TW_STR64[66], FAR*pTW_STR64;
TW_STR128[130], FAR *pTW_STR128;
TW_STR255[256], FAR *pTW_STR255;
TW_STR1024[1026], FAR *pTW_STR1026;
TW_UNI512[512], FAR *pTW_UNI512;

On Windows: These include room for the strings and a NULL character.

On Macintosh: These include room for a length byte followed by the string.

Note: The TW_STR255 must hold less than 256 characters so the length fits in the first byte

on Macintosh.

Numeric types

typedef char

typedef short

typedef long

typedef unsigned char
typedef unsigned short
typedef unsigned long
typedef unsigned short

Fixed point structure type

typedef struct {
TW_INT16
TW_UINT16

TW_INT8 FAR *pTW_INTS;

TW_INT16 FAR *pTW_INT16;
TW_INT32 FAR *pTW_INT32;
TW_UINTS FAR *pTW_UINTS;

TW_UINT16 FAR*pTW_UINT16;
TW_UINT32 FAR *pTW_UINT32;
TW_BOOL FAR *pTW_BOOL;

Wholeg;
Frac;

}TW_FIX32, FAR*pTW_FIX32;

Note: In cases where the data type is smaller than TW_UINT32, the data should reside in the

lower word.

TWAIN 1.9 Specification

8-265

Chapter 8

Data Structure Definitions

This section provides descriptions of the data structure definitions.

TW_ARRAY
typedef struct {
TW Ul NT16 I temlype;
TW Ul NT32 Numi t ens;
TW_UI NT8 Itemlist[1];

} TWARRAY, FAR * pTW ARRAY;

Used by
TW_CAPABILITY structure (when ConType field specifies TWON_ARRAY)

Description

This structure stores a group of associated individual values which, when taken as a whole,
describes a single “value” for a capability. The values need have no relationship to one another
aside from being used to describe the same “value” of the capability. Such an array of values is
useful to describe the CAP_SUPPORTEDCAPS list. This structure is used as a member of
TW_CAPABILITY structures. Since this structure does not, therefore, exist “stand-alone” it is
identified by a TWON_xxxx constant rather than a DAT_xxxx. This structure is related in
function and purpose to TW_ENUMERATION, TW_ONEVALUE, and TW_RANGE.

Field Descriptions

ItemType The type of items in the array. The type is indicated by the constant held in this
field. The constant is of the kind TWTY_xxxx. All items in the array have the
same size.

Numltems How many items are in the array.

ItemList[1] This is the array. One value resides within each element of the array. Space for
the array is not allocated inside this structure. The ItemList value is simply a
placeholder for the start of the actual array, which must be allocated when the
container is allocated . Remember to typecast the allocated array, as well as
references to the elements of the array, to the type indicated by the constant in
ItemType.

8-266 TWAIN 1.9 Specification

Data Types and Data Structures

TW_AUDIOINFO

typedef struct {
TW STR255 Nane;
TW_ UI NT32 Reser ved,;
} TWAUDI O NFO FAR * pTW AUDI O NFO

Used by
The DG_AUDIO / DAT_AUDIOINFO / MSG_GET operation

Description

Field Descriptions
Name Name of audio data

Reserved Reserved space

TWAIN 1.9 Specification 8-267

Chapter 8

TW_CAPABILITY

typedef struct {

TW_ Ul NT16 Cap;
TW Ul NT16 ConType,;
TW HANDLE hCont ai ner;

} TW.CAPABI LI TY, FAR * pTW CAPABI LI TY;

Used by

DG_CONTROL / DAT_CAPABILITY / MSG_GET
DG_CONTROL / DAT_CAPABILITY /7 MSG_GETCURRENT
DG_CONTROL / DAT_CAPABILITY /7 MSG_GETDEFAULT
DG_CONTROL 7/ DAT_CAPABILITY / MSG_RESET
DG_CONTROL / DAT_CAPABILITY / MSG_SET

Description

8-268

Used by an application either to get information about, or control the setting of a capability.
The first field identifies the capability being negotiated (e.g., ICAP_BRIGHTNESS). The second
specifies the format of the container (e.g., TWON_ONEVALUE). The third is a handle
(HGLOBAL under Microsoft Windows) to the container itself.

The application always sets the Cap field. On MSG_SET, the application also sets the ConType
and hContainer fields. On MSG_RESET, MSG_GET, MSG_GETCURRENT, and
MSG_GETDEFAULT, the source fills in the ConType and hContainer fields.

It is always the application’s responsibility to free the container when it is no longer needed.
Ona MSG_GET, MSG_GETCURRENT, or MSG_GETDEFAULT, the source allocates the
container but ownership passes to the application. On a MSG_SET, the application provides
the container either by allocating it or by re-using a container created earlier.

On a MSG_SET, the Source must not modify the container and it must copy any data that it
wishes to retain.

TWAIN 1.9 Specification

Field Descriptions

Cap

ConType

hContainer

TWAIN 1.9 Specification

Data Types and Data Structures

The numeric designator of the capability (of the form CAP_xxxx, ICAP_xxxXx, or
ACAP_xxxx). e.g. ICAP_BRIGHTNESS. A list of these can be found in Chapter
9 and in the TWAIN.H file.

The type of the container referenced by hContainer. The container structure
will be one of four types: TWON_ARRAY, TWON_ENUMERATION,
TWON_ONEVALUE, or TWON_RANGE. One of these values, which types the
container, should be entered into this field by whichever TWAIN entity fills in
the container. When the application wants to set (MSG_SET) the Source’s
capability, the application must fill in this field. When the application wants to
get (MSG_GET) capability information from the Source, the Source must fill in
this field.

References the container structure where detailed information about the
capability is stored. When the application wants to set (MSG_SET) the Source’s
capability, the application must provide the hContainer. When the application
wants to get (MSG_GET) the Source’s capability information, the Source must
allocate the space for the container. In either case, the application must release
this space.

8-269

Chapter 8

TW_CIECOLOR

typedef struct {

TW Ul NT16 Col or Space

TW.I NT16 LowEndi an;

TW.I NT16 Devi ceDependent ;
TW.I NT32 Ver si onNunber ;

TW TRANSFORMBTAGE St ageABC;
TW TRANSFORMBTAGE St ageLM\;

TW_CI EPO NT Wi t ePoi nt ;
TW_CI EPO NT Bl ackPoi nt ;
TW_CI EPO NT Wi t ePaper ;
TW_CI EPO NT Bl ackl nk;

TW_FI X32 Sanpl es[1] ;

} TWC ECOLOR FAR * pTW Cl ECOLOR;

Used by

DG_IMAGE / DAT_CIECOLOR / MSG_GET

Description

8-270

Defines the mapping from an RGB color space device into CIE 1931 (XYZ) color space. For
more in-depth information, please reference the PostScript Language Reference Manual,
Second Edition, pp. 173-193. Note that the field names do not follow the conventions used
elsewhere within TWAIN. This breach allows the identifiers shown here to exactly match those
described in Appendix A, which was not written specifically for this Toolkit. Please also note
that ColorSpace has been redefined from its form in Appendix A to use TWPT_xxxx constants
defined in the TWAIN.H file.

This structure closely parallels the TCIEBasedColorSpace structure definition in Appendix A.
Note that the field names are slightly different and that two new fields have been added
(WhitePaper and BlacklInk) to describe the reflective characteristics of the page from which the
image was acquired.

If the Source can provide TWPT_CIEXYZ, it must support all operations on this structure.

TWAIN 1.9 Specification

Field Descriptions

ColorSpace

LowEndian

DeviceDependent

VersionNumber

StageABC

StageLMN

WhitePoint

BlackPoint

WhitePaper

Blackink

Samples[1]

TWAIN 1.9 Specification

Data Types and Data Structures

Defines the original color space that was transformed into CIE XYZ. Use
a constant of type TWPT_xxxx. This value is not set-able by the
application. Application should write TWON_DONTCARE16 into this
onaMSG_SET.

Used to indicate which data byte is taken first. If zero, then high byte is
first. If non-zero, then low byte is first.

If non-zero then color data is device-dependent and only ColorSpace is
valid in this structure.

Version of the color space descriptor specification used to define the
transform data. The current version is zero.

Describes parametrics for the first stage transformation of the Postscript
Level 2 CIE color space transform process.

Describes parametrics for the first stage transformation of the Postscript
Level 2 CIE color space transform process.

Values that specify the CIE 1931 (XYZ space) tri-stimulus value of the
diffused white point.

Values that specify the CIE 1931 (XYZ space) tri-stimulus value of the
diffused black point.

Values that specify the CIE 1931 (XYZ space) tri-stimulus value of ink-
less “paper” from which the image was acquired.

Values that specify the CIE 1931 (XYZ space) tri-stimulus value of solid
black ink on the “paper” from which the image was acquired.

Optional table look-up values used by the decode function. Samples are
ordered sequentially and end-to-end as A, B, C, L, M, and N.

8-271

Chapter 8

TW_CIEPOINT
typedef struct {
TW FI X32 X;
TW FI X32 Y;
TW FI X32 Z;

} TWC EPO NT, FAR * pTW Cl EPO NT;

Used by
Embedded in the TW_CIECOLOR structure

Description

Defines a CIE XYZ space tri-stimulus value. This structure parallels the TCIEPoint structure
definition in Appendix A.

Field Descriptions
X First tri-stimulus value of the CIE space representation.
Y Second tri-stimulus value of the CIE space representation.

Z Third tri-stimulus value of the CIE space representation.

8-272 TWAIN 1.9 Specification

Data Types and Data Structures

TW_CUSTOMDSDATA

typedef struct {
TW_ UI NT32 | nf oLengt h; /* Length (in bytes) of data */
TW_UI NT8 | nf oDat a[1] ; /* Array (Length) bytes long */
} TW CUSTOVDSDATA, FAR *pTW CUSTOVDSDATA,;

Used by

DG_CONTROL / DAT_CUSTOMDSDATA / MSG_GET
DG_CONTROL / DAT_CUSTOMDSDATA /7 MSG_SET

Description

Allows for a data source and application to pass custom data to each other.

The format of the data contained in InfoData will be data source specific and will not be
defined by the TWAIN API. This structure will be used by an application to query the data
source for it’s current settings, and to archive them to disk. Although the format for this
custom data is not defined by TWAIN, source implementers are encouraged to use a ASCII
representation for the custom data to be used for settings archival. A Windows INI style
format would be easy to implement and allow for additional features to be added without
breaking backwards compatibility.

It is also recommended that source vendors embed basic source revision and vendor 1D

information in the InfoData body so they can determine if the structure being based to the data
source is correct.

Field Descriptions
InfoLength Length, in bytes, of data
InfoData[1] Array (length) bytes long

TWAIN 1.9 Specification 8-273

Chapter 8

TW_DECODEFUNCTION

typedef str
TW FI X32
TW FI X32
TW FI X32
TW FI X32
TW FI X32
TW FI X32
TW FI X32
TW FI X32

uct {
Startln;
Br eakl n;
Endl n;
Start Qut;
Br eakQut ;
EndCut ;
Gammm;
Sanpl eCount ;

} TW DECODEFUNCTI ON, FAR * pTW DECODEFUNCTI ON;

Used by

Embedded in the
structure

Description

TW_TRANSFORMSTAGE structure that is embedded in the TW_CIECOLOR

Defines the parameters used for channel-specific transformation. The transform can be
described either as an extended form of the gamma function or as a table look-up with linear

interpolation. Th

Field Descriptions

Startln

Breakln

Endin

StartOut

BreakOut

EndOut

Gamma

SampleCount

8-274

is structure parallels the TDecodeFunction structure definition in Appendix A.

Starting input value of the extended gamma function. Defines the minimum
input value of channel data.

Ending input value of the extended gamma function. Defines the maximum
input value of channel data.

The input value at which the transform switches from linear
transformation/interpolation to gamma transformation.

Starting output value of the extended gamma function. Defines the
minimum output value of channel data.

Ending output value of the extended gamma function. Defines the
maximum output value of channel data.

The output value at which the transform switches from linear
transformation/interpolation to gamma transformation.

Constant value. The exponential used in the gamma function.

The number of samples in the look-up table. Includes the values of Startin
and EndIn. Zero-based index (actually, number of samples - 1). If zero, use
extended gamma, otherwise use table look-up.

TWAIN 1.9 Specification

Data Types and Data Structures

Output Data Output Data
A A

EndOut 1 exponential EndOut

section

linear
section

\

BreakOut -
StartOut - StartOut
; ; ; Input Data ; —> Input Data
Startin Breakin Endin Startln Endin
Extended Gamma Parameters Table Look-up Parameters

TWAIN 1.9 Specification 8-275

Chapter 8

TW_DEVICEEVENT
typedef struct {

TW Ul NT32 Event ;

TW STR255 Devi ceNane;

TW_UI NT32 Batt er yM nut es; /1 Battery M nutes Renaining
TW.I NT16 Bat t er yPer cent age; /1 Battery Percentage Renai ning
TW.I NT32 Power Suppl vy; /1 Power Supply

TW FI X32 XResol ution; /1 Resol ution

TW FI X32 YResol uti on; // Resol ution

TW_UI NT32 Fl ashUsed?2; /1 Flash Used2

TW_UI NT32 Aut omat i cCapt ur e; /1 Automatic Capture

TW_UI NT32 Ti meBeforeFirstCapture; // Automatic Capture

TW_UI NT32 Ti meBet weenCapt ur es; /1 Automatic Capture

} TW DEVI CEEVENT, FAR * pTW DEVI CEEVENT;

Used by
DG_CONTROL / DAT_DEVICEEVENT / MSG_GET

Description

Provides information about the Event that was raised by the Source. The Source should only
fill in those fields applicable to the Event. The Application must only read those fields
applicable to the Event.

Field Descriptions

Event One of the TWDE_xxxx values. Defines the event that has
taken place.
DeviceName The name of the device that generated the event.

Valid for TWDE_BATTERYCHECK only
BatteryMinutes Minutes of battery power remaining.
BatteryPercentage Percentage of battery power remaining.
Valid for TWDE_POWERSUPPLY only
PowerSupply Current power supply in use.

Valid for TWDE_RESOLUTION only

XResolution Current X Resolution.

YResolution Current Y Resolution.
Valid for TWDE_FLASHUSED? only

FlashUsed2 Current flash setting.

Valid for TWDE_AUTOMATICCAPTURE only
AutomaticCapture Number of images camera will capture.
TimeBeforeFirstCapture Number of seconds before first capture.

TimeBetweenCaptures Hundredths of a second between captures.

8-276 TWAIN 1.9 Specification

Data Types and Data Structures

TW_ELEMENTS8
typedef struct {

TW_UI NT8 | ndex;

TW_UI NT8 Channel 1;
TW_UI NT8 Channel 2;
TW_UI NT8 Channel 3;

} TWELEMENTS, FAR * pTW ELEMENTS;

Used by
Embedded in the TW_GRAYRESPONSE, TW_PALETTE8 and TW_RGBRESPONSE structures

Description

This structure holds the tri-stimulus color palette information for TW_PALETTES structures.
The order of the channels shall match their alphabetic representation. That is, for RGB data, R
shall be channel 1. For CMY data, C shall be channel 1. This allows the application and Source
to maintain consistency. Grayscale data will have the same values entered in all three channels.

Field Descriptions
Index Value used to index into the color table. Especially useful on the Macintosh.
Channell First tri-stimulus value (e.g. Red).
Channel?2 Second tri-stimulus value (e.g. Green).

Channel3 Third tri-stimulus value (e.g. Blue).

TWAIN 1.9 Specification 8-277

Chapter 8

TW_ENUMERATION

typedef struct ({

TW Ul NT16 I tenlype;
TW Ul NT32 Num t ens;
TW_UI NT32 Current | ndex;
TW_UI NT32 Def aul t | ndex;
TW_UI NT8 Itemlist[1];

} TW ENUMERATI ON, FAR * pTW ENUVERATI ON;

Used by

TW_CAPABILITY structure (when ConType field specifies TWON_ENUMERATION)

Description

Stores a group of individual values describing a capability. The values are ordered from lowest
to highest values, but the step size between each value is probably not uniform. Such a list
would be useful to describe the discreet resolutions of a capture device supporting, say, 75, 150,
300, 400, and 800 dots per inch.

This structure is related in function and purpose to TW_ARRAY, TW_ONEVALUE, and

TW_RANGE.
Field Descriptions
ItemType
Numltems
Currentindex

Defaultindex

ItemList[1]

8-278

The type of items in the enumerated list. The type is indicated by the constant
held in this field. The constant is of the kind TWTY_xxxx. All items in the
array have the same size.

How many items are in the enumeration.

The item number, or index (zero-based) into ItemList[], of the “current” value
for the capability.

The item number, or index (zero-based) into ItemList[], of the “power-on”
value for the capability.

The enumerated list: one value resides within each array element. Space for
the list is not allocated inside this structure. The ItemList value is simply a
placeholder for the start of the actual array, which must be allocated when
the container is allocated. Remember to typecast the allocation to ItemType,
as well as references to the elements of the array.

TWAIN 1.9 Specification

Data Types and Data Structures

TW_EVENT

typedef struct {
TW MEMREF pEvent;
TW Ul NT16 TWvessage;
TW EVENT, FAR * pTW EVENT,;

Used by
DG_CONTROL / DAT_EVENT /7 MSG_PROCESSEVENT

Description

Used to pass application events/messages from the application to the Source. The Source is
responsible for examining the event/message, deciding if it belongs to the Source, and
returning an appropriate return code to indicate whether or not the Source owns the
event/message. This process is covered in more detail in the Event Loop section of Chapter 3.

Field Descriptions
pEvent A pointer to the event/message to be examined by the Source.

Under Microsoft Windows, pEvent is a pMSG (pointer to a Microsoft Windows
MSG struct). That is, the message the application received from GetMessage().

On the Macintosh, pEvent is a pointer to an EventRecord.

TWNMessage Any message (MSG_xxxx) the Source needs to send to the application in
response to processing the event/message. The messages currently defined for
this purpose are MSG_NULL, MSG_XFERREADY and MSG_CLOSEDSREQ.

TWAIN 1.9 Specification 8-279

Chapter 8

TW_EXTIMAGEINFO

8-280

typedef struct {
TW_ Ul NT32 Numi nf os;
TW. I NFO Info[1];
} TWEXTI MAGEI NFO, FAR * pTW. EXTI MAGEI NFO,

Used by
DG_IMAGE 7 DAT_EXTIMAGEINFO / MSG_GET

Description

This structure is used to pass extended image information from the data source to application
at the end of State 7. The application creates this structure at the end of State 7, when it receives
XFERDONE. Application fills Numinfos for Number information it needs, and array of
extended information attributes in Infos[] array. Application, then, sends it down to the source
using the above operation triplet. The data source then examines each Info, and fills the rest of
data with information allocating memory when necessary.

The design of extended image information allows for two methods of passing multiple InfolD
types. For instance, assume it is possible for a Source to generate more than one barcode off an
image. An Application can request to acquire the data in one of two ways. The first way is as
follows:

Applications asks for:

TW EXTI MAGEI NFO

Num nfos ==

TW. I NFJ 0]
I nf ol D == TWElI _BARCODECOUNT
Itenlfype == TW UNI NT32
Num tens == 0
CondCode ==
Item ==

TW.I NFJ 1]

I nfol D == TWEI _BARCODETYPE
I tenmlype == TW UNI NT32
Num tens ==
CondCode ==
Item ==

TW. I NFQJ 2]
I nfol D == TWElI _BARCODETEXTLENGTH
Itenifype == TW UNI NT32
Num tens == 0
CondCode ==
Item ==

TW.I NFJ 3]
I nfol D == TWVEI _BARCODETEXT
I tenlype ==
Num tens ==
CondCode ==
Item ==

TWAIN 1.9 Specification

Data Types and Data Structures

The Source returns...

TWAIN 1.9 Specification

TW EXTI MACGEI NFO

Num nfos ==

TW.I NFQ 0]
I nf ol D == TWEI _BARCODECOUNT
I tenmlype == TW Ul NT32
Num tenms ==
CondCode == TWCC_SUCCESS
l[tem ==

TW.I NFQ 1]
I nf ol D == TWEI _BARCCDETYPE
I tenmlype == TW Ul NT32
Num tenms ==
CondCode == TWCC_SUCCESS
Item == TW HANDLE- 0

TW.I NFQ 2]
I nf ol D == TWElI _BARCCDETEXTLENGTH
I tenmlype == TW Ul NT32
Num tenms ==
CondCode == TWCC_SUCCESS
Item == TW HANDLE-1

TW. I NFQ 3]
I nf ol D == TWElI _BARCCDETEXT
I temlype == TW HANDLE
Num tenms ==
CondCode == TWCC_SUCCESS
ltem == TW HANDLE- 2

((TW.UI NT32*) TW HANDLE- 0) [0] TWBT_30F9

((TW_UI NT32*) TW HANDLE- 0) [1] TWBT_20F51 NTERLEAVED
((TW_UI NT32*) TW HANDLE- 1) [0] 16

((TW.UI NT32*) TW HANDLE- 1) [1] 32

((TW_UI NT8*) TW HANDLE- 2) [0] Barcode Text 0

((TW_UI NT8*) TW HANDLE- 2) [((TW_UI NT32*) TW HANDLE- 1) [0]]
Barcode Text 1

Note that Item is a pointer to the first datum for this TW_INFO. The Item field must be a
TW_HANDLE to the data if the value if the following is true:
(Si zeOf Specifiedltem* Numtens) > sizeof (TW HANDLE)

It is the responsibility of the Application to free both the TW_EXTIMAGEINFO structure
and any Item values that are TW_HANDLE, based on this calculation.

The reason for this design is so that the Source and Application can easily index through
the TW_INFO structures (ex: TW_EXTIMAGEINFO->Item[0])

Note that the above structure could also be requested by the Application as follows:

TW_EXTI MAGElI NFO

Numl nf os ==

TW. I NFQ 0]
I nf ol D == TWElI _ BARCODECQOUNT
I tenmlype == TW UNI NT32
Num tens ==
CondCode ==
Item ==

8-281

Chapter 8

TW.I NFJ 1]
I nfol D == TWElI _BARCODETYPE
Itenfype == TW UNI NT32
Num tens ==
CondCode ==
Item ==
TW.I NFJ 2]
I nfol D == TWElI _BARCODETEXTLENGTH
Itenlfype == TW UNI NT32
Num tens ==
CondCode ==
Item ==
TW.I NFJ 3]
I nfol D == TWElI _BARCODETEXT
I tenilype ==
Num tens ==
CondCode ==
Item ==
TW.I NFJ 4]
I nfol D == TWEI _BARCODETEXT
I tenilfype ==
Num tens ==
CondCode ==
Item ==

If the Source detects multiple occurrences of a tag, then it must distribute the data as best it can
across the applicable TW_INFO fields. Numltems must be equal to one, and if there are not
enough TW_INFOs supplied for the specified InfolD, then any remaining data is discarded by
the Source. In this instance the return structure is big enough, and would look like the
following...

TW EXTI MAGEI NFO

Num nfos == 5

TW. I NFJ 0]
I nf ol D == TWElI _BARCODECOUNT
I tenlfype == TW U NT32
Num tens ==
CondCode == TWCC_SUCCESS
Item ==

TW.I NFJ 1]
I nfol D == TWElI _BARCODETYPE
Itenlfype == TW. U NT32
Num tens ==
CondCode == TWCC_SUCCESS
Item == TW HANDLE- O

TW.I NFJ 2]
I nfol D == TWEI _ BARCODETEXTLENGTH
Itenifype == TW. U NT32
Num tens ==
CondCode == TWCC_SUCCESS
Item == TW HANDLE- 1

8-282 TWAIN 1.9 Specification

TW I NFQ| 3]

I nfol D == TWElI _BARCODETEXT
Itenmlype == TW HANDLE

Num tens ==

CondCode == TWCC_SUCCESS
Item == TW HANDLE- 2

TW I NEQ 4]

I nfol D == TWElI _BARCODETEXT
Itenlype == TW HANDLE

Num tens ==

CondCode == TWCC_SUCCESS
Item == TW HANDLE- 3

Data Types and Data Structures

Numlinfos

Info[1]

((TW.UI NT32*) TW HANDLE- 0) [0]
((TW_UI NT32*) TW HANDLE- 0) [1]

((TW_UI NT32*) TW HANDLE- 1) [0]
((TW.UI NT32*) TW HANDLE- 1) [1]

((TW.UI NT8*) TW HANDLE- 2) [0]
((TW.UI NT8*) TW HANDLE- 3)[0]

Field Descriptions

TVBT_30F9
TWBT_20F5| NTERLEAVED

16
32

Barcode Text O
Bar code Text 1

Number of information that application is requesting. This is filled by the

application. If positive, then the application is requesting specific extended
image information. The application should allocate memory and fill in the
attribute tag for image information.

TWAIN 1.9 Specification

Array of information. See TW_INFO structure.

8-283

Chapter 8

TW_FILESYSTEM
typedef struct {

/] DG _CONTROL / DAT_FI LESYSTEM / MsG xxxx fields...

TW STR255
TW STR255
TW MEMREF

| nput Nane;
Cut put Nane;
Cont ext ;

// DG _CONTROL / DAT_FI LESYSTEM / MBG_COPY
/1 DG CONTROL / DAT_FILESYSTEM / MSG DELETE field...

i nt Recur si ve;

/] DG _CONTROL / DAT_FI LESYSTEM / MSG _CGETINFO fields...
TW.I NT32 Fi | eType;

TW_UI NT32 Si ze;

TW STR32 Cr eat eTi neDat €;
TW _STR32 Modi fi edTi neDat e;
TW Ul NT32 Fr eeSpace;

TW.I NT32 Newl mageSi ze;
TW Ul NT32 Nunber O Fi | es;
TW_UI NT32 Nurmber OF Sni ppet s;
TW Ul NT32 Devi ceG oupMask;
char Reser ved[508] ;

} TW.FI LESYSTEM

Used by

FAR * pTW FI LESYSTEM

DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM /7 MSG_COPY

DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM /7 MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

Description

Provides information about the currently selected device.

8-284

TWAIN 1.9 Specification

Data Types and Data Structures

Field Descriptions

InputName The name of the input or source file.
OutputName The result of an operation or the name of a destination file.
Context A pointer to Source specific data used to remember state information,

such as the current directory.
MSG_GETINFO / MSG_GETFILEFIRST / MSG_DELETE

Recursive When set to TRUE recursively apply the operation. (ex: deletes all
subdirectories in the directory being deleted; or copies all sub-
directories in the directory being copied.

MSG_GETINFO /7 MSG_GETFILEFIRST / MSG_GETFILENEXT

FileType One of the TWFS_xxxx values.

Size TWFT_DIRECTORY - Total size of media in bytes.
TWFT_IMAGE - Size of image in bytes.
TWFT_XXXX - All other file types return a value of 0.

CreateTimeDate The create date of the file, in the form “YYYY/MM/DD
HH:mm:SS:sss” where YYYY is the year, MM is the numerical month,
DD is the numerical day, HH is the hour, mm is the minute, SS is the
second, and sss is the millisecond.

ModifyTimeDate Last date the file was modified. Same format as CreateTimeDate.
FreeSpace The bytes of free space left on the current device.

NewlmageSize An estimate of the amount of space a new image would take up,
based on image layout, resolution and compression. Dividing this
value into the FreeSpace will yield the approximate number of images
that the Device has room for.

NumberOfFiles TWFT_IMAGE -Return 0
TWFT_Xxxx - Return number of TWFT_IMAGE files on the file
system including those in all sub-directories.

NumberOfSnippets The number of audio snippets associated with a file of type
TWFY_IMAGE.

DeviceGroupMask A set of bits, with each bit uniquely identifying a device of type
TWFY_CAMERA and any associated TWFY_CAMERATOP and/or
TWFY_CAMERABOTTOM devices. See the article on File Systems in
Appendix A of this specification for more information.

Reserved Space reserved for future expansion of this structure.

TWAIN 1.9 Specification 8-285

Chapter 8

TW_FIX32

typedef struct {
TW.I NT16 Whol e;
TW Ul NT16 Frac;

} TWEFI X32, FAR * pTWFI X32;

Used by

Embedded in the TW_CIECOLOR, TW_CIEPOINT, TW_DECODEFUNCTION, TW_FRAME,
TW_IMAGEINFO, and TW_TRANSFORMSTAGE structures.

Used in TW_ARRAY, TW_ENUMERATION, TW_ONEVALUE, and TW_RANGE structures
when ItemType is TWTY_FIX32.

Description

Stores a Fixed point number in two parts, a whole and a fractional part. The Whole part carries
the sign for the number. The Fractional part is unsigned.

Field Descriptions
Whole The Whole part of the floating point number. This number is signed.

Frac The Fractional part of the floating point number. This number is unsigned.

The following functions convert TW_FIX32 to float and float to TW_FIX32:
/**

* Fl oat ToFi x32
* Convert a floating point value into a FI X32.

**/

TW. FI X32 Fl oat ToFi x32 (fl oat floater)

{
TW FI X32 Fi x32_val ue;
TWINT32 value = (TWINT32) (floater * 65536.0 + 0.5);
Fi x32_val ue. Whol e = val ue >> 16;
Fi x32_val ue. Frac = val ue & 0x0000ffffL;
return (Fi x32_val ue);
}

/**

* Fi x32ToFl oat
* Convert a FIX32 value into a floating point val ue.

**/

float FIX32ToFl oat (TW.FI X32 fix32)

{
fl oat fl oater;
floater = (float) fix32.Wwole + (float) fix32.Frac / 65536.0;
return floater;

}

8-286 TWAIN 1.9 Specification

Data Types and Data Structures

TW_FRAME

typedef struct {
TW FI X32 Left;
TW FI X32 Top;
TW FI X32 Ri ght;
TW FI X32 Bot t om

} TWFRAME, FAR * pTW FRAME;

Used by

Embedded in the TW_IMAGELAYOUT structure

Description

Defines a frame rectangle in ICAP_UNITS coordinates.

Field Descriptions
Left Value of the left-most edge of the rectangle (in ICAP_UNITS).
Top Value of the top-most edge of the rectangle (in ICAP_UNITS).
Right Value of the right-most edge of the rectangle (in ICAP_UNITS).
Bottom Value of the bottom-most edge of the rectangle (in ICAP_UNITS).

Origin
of Page

Top Boftom

o Left ;Pf

Acquired
Image

Right —;IM

TW_FRAME
parameters

Frame Parameters

TWAIN 1.9 Specification 8-287

Chapter 8

TW_GRAYRESPONSE

typedef struct {
TW ELEMENT8 Response[1] ;
} TW GRAYRESPONSE, FAR * pTW GRAYRESPONSE;

Used by

DG_IMAGE /7 DAT_GRAYRESPONSE / MSG_RESET
DG_IMAGE /7 DAT_GRAYRESPONSE / MSG_SET

Description

This structure is used by the application to specify a set of mapping values to be applied to
grayscale data. Use this structure for grayscale data whose bit depth is up to and including 8-
bits. This structure can only be used if TW_IMAGEINFO.PixelType is TWPT_GRAY. The
number of elements in the array is determined by TW_IMAGEINFO.BitsPerPixel—the number
of elements is 2 raised to the power of TW_IMAGEINFO.BitsPerPixel.

This structure is primarily intended for use by applications that bypass the Source’s built-in
user interface.

Field Descriptions

Response[1] Transfer curve descriptors. All three channels must contain the same value for
every entry.

8-288 TWAIN 1.9 Specification

Data Types and Data Structures

TW_HANDLE

On Windows:
t ypedef HANDLE TW HANDLE;

On Macintosh:
t ypedef Handl e TW HANDLE;

Used by
Embedded in the TW_CAPABILITY and TW_USERINTERFACE structures

Description
The typedef of Handles are defined by the operating system. TWAIN defines TW_HANDLE to

be the handle type supported by the operating system.

Field Descriptions

See definitions above

TWAIN 1.9 Specification 8-289

Chapter 8

TW_IDENTITY

typedef struct {
TW_ UI NT32 Id;
TW _VERSI ON Ver si on;
TW_UI NT16 Pr ot ocol Mgj or;
TW_UI NT16 Pr ot ocol M nor;
TW_UI NT32 Suppor t edG oups;
TW STR32 Manuf act ur er;
TW STR32 Pr oduct Fami | y;
TW STR32 Pr oduct Nane;

} TWIDENTITY, FAR * pTW.|I DENTI TY;

Used by

A large number of the operations because it identifies the application and the Source
Description

Provides identification information about a TWAIN entity. Used to maintain consistent
communication between entities.

8-290 TWAIN 1.9 Specification

Field Descriptions
Id

Version

ProtocolMajor

ProtocolMinor

SupportedGroups

Manufacturer

ProductFamily

ProductName

TWAIN 1.9 Specification

Data Types and Data Structures

A unique, internal identifier for the TWAIN entity. This field is only filled
by the Source Manager. Neither an application nor a Source should fill this
field. The Source uses the contents of this field to “identify” which
application is invoking the operation sent to the Source.

A TW_VERSION structure identifying the TWAIN entity.

Major number of latest TWAIN version that this element supports (see
TWON_PROTOCOLMAJOR).

Minor number of latest TWAIN version that this element supports (see
TWON_PROTOCOLMINOR).

1. The application will normally set this field to specify which Data
Group(s) it wants the Source Manager to sort Sources by when
presenting the Select Source dialog, or returning a list of available
Sources. The application sets this prior to invoking a
MSG_USERSELECT operation.

2. The application may also set this field to specify which Data Group(s)
it wants the Source to be able to acquire and transfer. The application
must do this prior to sending the Source its MSG_ENABLEDS
operation.

3. The Source must set this field to specify which Data Group(s) it can
acquire. It will do this in response to a MSG_OPENDS.

String identifying the manufacturer of the application or Source. e.g.
“Aldus”.

Tells an application that performs device-specific operations which
product family the Source supports. This is useful when a new Source has
been released and the application doesn’t know about the particular
Source but still wants to perform Custom operations with it. e.g.
“ScanMan”.

A string uniquely identifying the Source. This is the string that will be
displayed to the user at Source select-time. This string must uniquely
identify your Source for the user, and should identify the application
unambiguously for Sources that care. e.g. “Scanlet llc”.

8-291

Chapter 8

TW_IMAGEINFO

typedef struct {

TW_FI X32 XResol ution;
TW FI X32 YResol uti on;

TW.I NT32 | mageW dt h;

TW.I NT32 | magelLengt h;

TW.I NT16 Sanpl esPer Pi xel ;
TW.I NT16 Bi t sPer Sanpl e[8] ;
TW.I NT16 Bi t sPer Pi xel ;

TW BOOL Pl anar ;

TW.I NT16 Pi xel Type;

TW_ Ul NT16 Conpr essi on;

} TW.IMAGEI NFO, FAR * pTW | MAGEI NFO,

Used by

The DG_IMAGE / DAT_IMAGEINFO / MSG_GET operation

Description

8-292

Describes the “real” image data, that is, the complete image being transferred between the
Source and application. The Source may transfer the data in a different format--the information
may be transferred in “strips” or “tiles” in either compressed or uncompressed form. See the
TW_IMAGEMEMXFER structure for more information.

The term “sample” is referred to a number of times in this structure. It holds the same meaning
as in the TIFF specification. A sample is a contiguous body of image data that can be
categorized by the channel or “ink color” it was captured to describe. In an R-G-B (Red-Green-
Blue) image, such as on your TV or computer’s CRT, each color channel is composed of a
specific color. There are 3 samples in an R-G-B; Red, Green, and Blue. A C-Y-M-K image has 4
samples. A Grayscale or Black and White image has a single sample.

Note: The value -1 in ImageWidth and ImageLength are special cases. It is possible for a
Source to not know either its Width or Length. Applications need to consider this
when allocating memory or otherwise dealing with the size of the Image.

TWAIN 1.9 Specification

Field Descriptions

XResolution

YResolution

ImageWidth

ImageLength

SamplesPerPixel

BitsPerSample[8]

BitsPerPixel

Planar

PixelType

Compression

TWAIN 1.9 Specification

Data Types and Data Structures

The number of pixels per ICAP_UNITS in the horizontal direction. The
current unit is assumed to be “inches” unless it has been otherwise
negotiated between the application and Source.

The number of pixels per ICAP_UNITS in the vertical direction.

How wide, in pixels, the entire image to be transferred is. If the Source
doesn’t know, set this field to -1 (hand scanners may do this).

--1 can only be used if the application has set
ICAP_UNDEFINEDIMAGESIZE to TRUE.

How tall/long, in pixels, the image to be transferred is. If the Source
doesn’t know, set this field to -1 (hand scanners may do this).

-1 can only be used if the application has set
ICAP_UNDEFINEDIMAGESIZE to TRUE.

The number of samples being returned. For R-G-B, this field would be
set to 3. For C-M-Y-K, 4. For Grayscale or Black and White, 1.

For each sample, the number of bits of information. 24-bit R-G-B wiill
typically have 8 bits of information in each sample (8+8+8). Some 8-bit
color is sampled at 3 bits Red, 3 bits Green, and 2 bits Blue. Such a
scheme would put 3, 3, and 2 into the first 3 elements of this array. The
supplied array allows up to 8 samples. Samples are not limited to 8 bits.
However, both the application and Source must simultaneously support
sample sizes greater than 8 bits per color.

The number of bits in each image pixel (or bit depth). This value is
invariant across the image. 24-bit R-G-B has BitsPerPixel = 24. 40-bit C-
M-Y-K has BitsPerPixel=40. 8-bit Grayscale has BitsPerPixel = 8. Black
and White has BitsPerPixel = 1.

If SamplesPerPixel > 1, indicates whether the samples follow one another
on a pixel-by-pixel basis (R-G-B-R-G-B-R-G-B...) as is common with a
one-pass scanner or all the pixels for each sample are grouped together
(complete group of R, complete group of G, complete group of B) as is
common with a three-pass scanner. If the pixel-by-pixel method (also
known as “chunky”) is used, the Source should set Planar = FALSE. If
the grouped method (also called “planar”) is used, the Source should set
Planar = TRUE.

This is the highest categorization for how the data being transferred
should be interpreted by the application. This is how the application can
tell if the data is Black and White, Grayscale, or Color. Currently, the
only color type defined is “tri-stimulus”, or color described by three
characteristics. Most popular color description methods use tri-stimulus
descriptors. For simplicity, the constant used to identify tri-stimulus
color is called TWPT_RBG, for R-G-B color. There is no default for this
value. Fill this field with the appropriate TWPT_xxxx constant.

The compression method used to process the data being transferred.
Default is no compression. Fill this field with the appropriate
TWCP_xxxx constant.

8-293

Chapter 8

TW_IMAGELAYOUT

typedef struct {

TW_FRAME Fr ane;

TW_UI NT32 Docunent Nunber ;
TW_UI NT32 PageNunber ;
TW_UI NT32 Fr ameNunber ;

} TW.I MAGELAYOUT, FAR * pTW.| MAGELAYOUT;

Used by

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Description

8-294

Involves information about the original size of the acquired image and its position on the
original “page” relative to the “page’s” upper-left corner. Default measurements are in inches
(units of measure can be changed by negotiating the ICAP_UNITS capability). This
information may be used by the application to relate the acquired (and perhaps processed
image) to the original. Further, the application can, using this structure, set the size of the
image it wants acquired.

Another attribute of this structure is the included frame, page, and document indexing
information. Most Sources and applications, at least at first, will likely set all these fields to
one. For Sources that can acquire more than one frame from a page in a single acquisition, the
FrameNumber field will be handy. Sources that can acquire more than one page from a
document feeder will use PageNumber and DocumentNumber. These fields will be especially
useful for forms-processing applications and other applications with similar document tracking
requirements.

TWAIN 1.9 Specification

Field Descriptions

Frame

DocumentNumber

PageNumber

FrameNumber

TWAIN 1.9 Specification

Data Types and Data Structures

Defines the Left, Top, Right, and Bottom coordinates (in ICAP_UNITS)
of the rectangle enclosing the original image on the original “page”. If
the application isn’t interested in setting the origin of the image, set
both Top and Left to zero. The Source will fill in the actual values
following the acquisition. See also TW_FRAME.

The document number, assigned by the Source, that the acquired data
originated on. Useful for grouping pages together. Usually a physical
representation, this could just as well be a logical construct. Initial
value is 1. Increment when a new document is placed into the
document feeder (usually tell this has happened when the feeder
empties). Reset when no longer acquiring from the feeder.

The page which the acquired data was captured from. Useful for
grouping Frames together that are in some way related, usually
Source. Usually a physical representation, this could just as well be a
logical construct. Initial value is 1. Increment for each page fed from a
page feeder. Reset when a new document is placed into the feeder.

Usually a chronological index of the acquired frame. These frames are
related to one another in some way; usually they were acquired from
the same page. The Source assigns these values. Initial value is 1.
Reset when a new page is acquired from.

8-295

Chapter 8

TW_IMAGEMEMXFER

typedef struct {

TW Ul NT16 Conpr essi on;
TW Ul NT32 Byt esPer Row;
TW_UI NT32 Col umms;
TW_ Ul NT32 Rows;

TW Ul NT32 XOf f set;
TW Ul NT32 YO f set;
TW_UI NT32 BytesWitten;
TW MEMORY Menory;

} TW.IMAGEMEMXFER, FAR * pTW | MAGEMEMXFER;

Used by

DG_IMAGE / DAT_IMAGEMEMXFER /7 MSG_GET

Description

8-296

Describes the form of the acquired data being passed from the Source to the application. When
used in combination with a TW_IMAGEINFO structure, the application can correctly interpret
the image.

This structure allows transfer of “chunks” from the acquired data. These portions may be
either “strips” or “tiles.” Strips are tiles whose width matches that of the full image. Strips are
always passed sequentially, from “top” to “bottom”. A tile’s position does not necessarily
follow that of the previously passed tile. Most Sources will transfer strips.

Note: The application should remember what corner was contained in the first tile of a
plane. When the opposite corner is delivered, the plane is complete. The dimensions
of the memory transfers may vary.

Data may be passed either compressed or uncompressed. All Sources must pass uncompressed
data. Sources are not required to support compressed data transfers. Compressed data
transfers, and how the values are entered into the fields of this structure, are described in
Chapter 4.

Following is a picture of some of the fields from a TW_IMAGEMEMXFER structure. The large
outline shows the entire image which was selected to be transferred. The smaller rectangle
shows the particular portion being described by this TW_IMAGEMEMXFER structure.

Note: Remember that for a “strip” transfer XOffset = 0, and
Columns = TW_IMAGEINFO.ImageWidth.

TWAIN 1.9 Specification

Data Types and Data Structures

TW_IMAGEMEMXFER
parameters

XOffset . Columns

Tile being
transferred

- ™
TW_IMAGEMEMXFER
parameters
set ImageLength YOffset
(from TW_IMAGEINFO)
ows Strip being transferred Rows
v
Col
ImagelLength olumns
(from TW_IMAGEINFO) XOffset = Zero
Columns = ImageWidth
v ~_
ImageWidth

ImageWidth

(from TW_IMAGEINFO)

Tile Positioning

Field Descriptions

Compression

BytesPerRow

Columns
Rows

XOffset

YOffset

BytesWritten

Memory

TWAIN 1.9 Specification

(from TW_IMAGEINFO)

Strip Positioning

The compression method used to process the data being transferred. Write
the constant (TWCP_xxxx) that precisely describes the type of compression
used for the buffer. This may be different from the method reported in the
TW_IMAGEINFO structure (if the user selected a different method before the
actual transfer began, for instance). This is unlikely, but possible. The
application can optionally abort the acquisition if the value in this field differs
from the TW_IMAGEINFO value. Default is no compression (TWCP_NONE)
and most transfers will probably be uncompressed. See the list of constants in
the TWAIN.H file.

The number of uncompressed bytes in each row of the piece of the image
being described in this buffer.

The number of uncompressed columns (in pixels) in this buffer.
The number or uncompressed rows (in pixels) in this buffer.

How far, in pixels, the left edge of the piece of the image being described by
this structure is inset from the “left” side of the original image. If the Source is
transferring in “strips”, this value will equal zero. If the Source is transferring
in “tiles”, this value will often be non-zero.

Same idea as XOffset, but the measure is in pixels from the “top” of the
original image to the upper edge of this piece.

The number of bytes written into the transfer buffer. This field must always
be filled in correctly, whether compressed or uncompressed data is being
transferred.

A structure of type TW_MEMORY describing who must dispose of the buffer,
the actual size of the buffer, in bytes, and where the buffer is located in
memory.

8-297

Chapter 8

TW_INFO
typedef struct {
TW_UI NT16 I nfol D
TW Ul NT16 I temlype;
TW_UI NT16 Num t ens;
TW Ul NT16 CondCode;
TW Ul NT32 Item
} TWINFO, FAR * pTW. | NFQ
Used by
Within TW_EXTIMAGEINFO structure.
Description

This structure is used to pass specific information between the data source and the application.

Field Descriptions

InfolD Tag identifying an information. For TW_EXTIMAGEINFO, the information ID is
defined as IACAP_xxxx. (Please refer to Extended Image capabilities).

ItemType Item data type. Itis one of TWTY_xxxx value.
Numitems Number of items for this field.
CondCode This is condition code of availability of data for extended image attribute

requested. Fol